GOODEL

КАТАЛОГСВАРОЧНЫХ МАТЕРИАЛОВ

WWW.GOODEL.RU

О КОМПАНИИ

GOODEL является отечественным производителем и поставщиком профессионального сварочного оборудования, материалов, аксессуаров и средств индивидуальной защиты сварщика.

На сегодняшний день ассортимент компании позволяет осуществлять комплексные поставки на предприятия ключевых промышленных отраслей.

Команда профессионалов следит за постоянным пополнением и обновлением ассортимента, разработкой индивидуальных решений для задач любой сложности. Мы стремимся реализовать поставки по принципу «одного окна», когда у одного надежного поставщика можно приобрести всё необходимое для выполнения сварочных работ, от оборудования и материалов, до аксессуаров и расходных частей. Благодаря такому подходу существенно экономятся время и ресурсы заказчика, позволяя получить готовый результат «под ключ».

Материалы и оборудование «GOODEL» успешно применяются для сварки ответственных конструкций в строительстве, нефтегазовой промышленности, судостроении, мостостроении, машиностроении и других отраслях производства.

Ассортимент продукции

Оборудование для сварки и резки Сварочные электроды и проволока Средства индивидуальной защиты сварщика Аксессуары и расходные материалы

Основные принципы

Желание помочь клиентам совершить полезную покупку Помощь клиентам в оценке их потребностей Предложение только тех продуктов, которые удовлетворят эти потребности Постоянная связь с заказчиками на всех этапах работы

ЭЛЕКТРОДЫ

ПРОВОЛОКА

ОБОРУДОВАНИЕ

СИЗ

О ЗАВОДЕ

Завод ГУДЭЛ - это российский производитель сварочных электродов, который предлагает качественные и надёжные решения для профессионалов, работающих в промышленности, строительстве и других сферах, требующих высоких стандартов сварочных материалов.

Бренд GOODEL ориентирован на предоставление продукции, которая соответствует строгим стандартам качества и безопасности, обеспечивая стабильное и долговечное соединение в любых условиях эксплуатации.

марок сварочных электродов для любых задач

>100 >1500T >300

продукции в месяц на современных производственных линиях

профессионалов в команде, включая опытных инженеров и технологов.

Продукция GOODEL

сертифицирована по ГОСТ и международным стандартам

Надёжность и контроль

GOODEL строго контролирует каждую стадию производства

Покрытие

всей России и более 10 стран СНГ

7630 м² площади завода, включая производственные цеха, склады и лабораторию контроля качества.

МОДЕРНИЗАЦИЯ

В течение 2024 года на предприятии был реализован проект по модернизации и обнолению станочного парка на всех участках основного производства. На заготовительном участке стержней установлена линия волочения и высокоскоростной рубки стержней.

На участке опрессовки внедрены два высокопроизводительных вертикальных пресса импортного производства с безбрикетной системой подачи шихты, что позволило повысить производительность и точность процесса.

На участке термообработки установлены печи конвейерного и тоннельного типа, обспечивающие стабильность и качество термической обработки.

Все эти единицы нового оборудования гарантируют выпуск стабильно качественной продукции.

Кроме того, в начале 2024 года введена в эксплуатацию новая лаборатория физикомеханических испытаний, которая позволяет проводить все необходимые виды контроля.

Алфавитный указатель

Наименование	Стр.	Наименование	Стр.
GOODEL-52U	20	O3P-1	52
GOODEL AHO-4	7	O3C-4	17
GOODEL ER70S-6 O	29	O3C-6	18
GOODEL ER70S-6 Π	30	O3Y-1	70
GOODEL K65	19	O3Y-2	71
GOODEL MP-3	8	O34-6	72
GOODEL MP-3C (синие)	9	ОЗШ-3	59
MP-3 construction	10	ОЗШ-6	60
GOODEL-OK46	6	ОЗШ-8	61
GOODEL-OK46 GOLD	5	ОМГ-Н	62
GOODEL-OK48	21	T-590	63
АНЖР-1	31	T-620	64
АНЖР-2	32	ТМЛ-1У	49
AHO-11	13	ТМЛ-ЗУ	50
AHO-21	14	ТМУ-21У	22
AHO-4	11	УОНИ-13/45	23
AHO-6	12	УОНИ-13/55	24
MHЧ-2	69	УОНИ-13/65	26
MP-3	15	УОНИ-13/85	27
МР-3С (синие)	16	УОНИ-13/НЖ/12Х13	41
НЖ-13	33	УОНИ-13/НЖ/20Х13	65
НИАТ-5	34	УОНИИ-13/55Р	25
НИИ-48Г	35	ЦЛ-11	43
HP-70	73	ЦЛ-39	51
ОЗБ-2М	68	цл-9	42
ОЗИ-3	54	ЦН-6Л	66
ОЗЛ-17У	39	ЦТ-15	44
ОЗЛ-25Б	40	ЦТ-28	45
ОЗЛ-6	36	ЦУ-5	28
ОЗЛ-7	37	ЦЧ-4	73
ОЗЛ-8	38	ЭA-395/9	46
O3H-300M	57	ЭA-400/10T	47
O3H-400M	58	ЭА-400/10У	48
O3H-6	55	ЭH-60M	67
O3H-7	56		

Содержание

	Содержани			
Марка	Классификаци	Классификация и одобрения		
·	ПРОМТЕХ СТАНДАРТ	HAKC	PKO	Стр.
	пя сварки углеродистых и н	изколегиро	ванных стале	ей
GOODEL-OK46 GOLD	+	+	+	5
GOODEL-OK46	+	+	+	6
GOODEL AHO-4				7
GOODEL MP-3	+	+		8
GOODEL MP-3C (синие)				9
MP-3 construction				10
AHO-4	+			11
AHO-6	+			12
AHO-11	+			13
AHO-21	+			14
MP-3	+	+		13
МР-3С (синие)	+			14
O3C-4	+			17
O3C-6	+			18
GOODEL K65				19
GOODEL-52U	+	+		20
GOODEL-OK48				21
ТМУ-21У	+			22
УОНИ-13/45	+	+		23
УОНИ-13/55	+	+		24
УОНИИ-13/55Р		+		25
УОНИ-13/65	+			26
УОНИ-13/85				27
ЦУ-5	+			28
1.2. Проволоки дл	ля сварки углеродистых и н	изколегиров	занных стале	Й
GOODEL ER70S-6 O		+ .		29
GOODEL ER70S-6 Π		+		30
	оды для сварки высоколегі	ированных с	талей	
АНЖР-1		[31
АНЖР-2				32
НЖ-13				33
НИАТ-5				34
НИИ-48Г				35
ОЗЛ-6		+		36
ОЗЛ-7		-		37
ОЗЛ-8		+		38
ОЗЛ-17У		-		39
ОЗЛ-25Б				40
УОНИ-13/НЖ/12Х13				41
ЦЛ-9				42
<u>Ц</u> Л-11		+		43
ЦТ-15		+		44
ЦТ-28		<u>'</u>		45
ЭA-395/9				46
ЭA-400/10T				47
ЭА-400/10У				48

Содержание

	доржан	7.0		
	Классификация и одобрения			
Марка	ПРОМТЕХ СТАНДАРТ	HAKC	РКО	Стр.
3. Электроды для сварки л		теплоустойчи	вых сталей	ı
ТМЛ-1У				49
ТМЛ-ЗУ				50
ЦЛ-39				51
4. Элект	роды для резкі	и листа		•
O3P-1				52
5. Элек	троды для нап.	лавки		
HP-70				53
ОЗИ-3				54
O3H-6				55
O3H-7				56
O3H-300M				57
O3H-400M				58
ОЗШ-3				59
ОЗШ-6				60
ОЗШ-8				61
ОМГ-Н				62
T-590				63
T-620				64
УОНИ-13/НЖ/20Х13				65
ЦН-6Л				66
ЭH-60M				67
6. Электроды для сварки и	і наплавки мед	и и сплавов н	а ее основе	
ОЗБ-2М				68
7. Электроды д	ля сварки и на	плавки чугуна	<u> </u>	
MHY-2				69
O3Y-1				70
O3Y-2				71
O3Y-6				72
ЦЧ-4				73
	вочные матери			
Классификация наплавленного металла	а в соответстви	и с ГОСТ 9467-	75	74
Условия хранения и информация о прокалке				75
Назначение электродов по типам и мар	Назначение электродов по типам и маркам			76

Система менеджмента качества ISO 9001:2015

Система добровольной сертификации ПРОМТЕХСТАНДАРТ Госстандарт России № РОСС RU.32001.04ИБФ1.ОСП28.47294

Отдельные марки электродов имеют: свидетельство НАКС (группы технических устройств: ГДО, ГО, КО, МО, НГДО, ОТОГ, ОХНВП, ПТО, СК), сертификат Российского Классификационного Общества (РКО), КСМ, ПромТехСтандарт, НАКС с отметкой ПАО "Газпром

Классификация наплавленного металла в соответствии с ГОСТ 9467-75

Э

1

А факультативно Электроды для сварки углеродистых и низколегированных сталей, сталей повышенной прочности и высокопрочных сталей

Э – электрод

1 – индекс, определяющий механические свойства наплавленного металла и содержание в нем серы и фосфора

А – индекс, указывающий на то, что наплавленный металл обладает повышенными пластическими свойствами.

Тип	Механические св	Содержание в наплавленном металле, % (не более)			
электрода	Предел прочности, кгс/мм² (МПа)	Относительное удлинение, %	Ударная вязкость КСU, кгс⋅м/см² (Дж/см²)	S	Р
Э38	38 (372)	14	3 (29)	0,040	0,045
942	42 (412)	18	8 (78)	0,040	0,045
342A	42 (412)	22	15 (147)	0,030	0,035
946	46 (451)	18	8 (78)	0,040	0,045
346A	46 (451)	22	14 (137)	0,030	0,035
950	50 (490)	16	7 (69)	0,040	0,045
950A	50 (490)	20	13 (127)	0,030	0,045
355	55 (539)	20	12 (118)	0,030	0,045
Э60	60 (588)	18	10 (98)	0,030	0,035
970	70 (686)	14	6 (59)	0,030	0,035
Э85	85 (833)	12	5 (49)	0,030	0,035
Э100	100 (980)	10	5 (49)	0,030	0,035
3125	125 (1225)	8	4 (39)	0,030	0,035
Э150	150 (1470)	6	4 (39)	0,030	0,035

Пространственные положения при сварке

Нижнее горизонтальное или в лодочку

Нижнее в угол

Горизонтальный шов на вертикальной плоскости

Вертикальный шов на подъем

Вертикальный шов на спуск

Потолочный шов

Род тока и полярность

- = (+) DC+ постоянный ток обратной полярности (на электроде «+»)
- = (-) DC- постоянный ток прямой полярности (на электроде «-»)
- ~ АС переменный ток

GOODEL-OK46 GOLD

ГОСТ 9466-75, ГОСТ 9467-75 ТУ 1272-002-11040008-2001 <u>Э46 – GOODEL-ОК46 – Ø – УД</u> E 430(3) – РЦ 11

Описание

Электроды с рутилово-целлюлозным видом покрытия предназначены для сварки рядовых и ответственных конструкций из углеродистых и низколегированных сталей с временным сопротивлением разрыву до 451 МПа. Применяются для прихваток, корневых швов, заварки широких зазоров, сварки тонколистового металла.

Сварка при пониженной силе тока: \emptyset 2,5 мм — от 40A, \emptyset 3,0 мм — от 40A, \emptyset 4.0 мм — от 90A.

Электроды отличаются высокими сварочно-технологическими свойствами: легким возбуждением дуги, стабильностью её горения во время процесса сварки, легкой отделяемостью шлаковой корки, хорошим формированием сварного шва и низкой чувствительностью к окисленной поверхности.

Сварка производится дугой средней длины.

Сварка может выполняться как на переменном, так и на постоянном токе

ПРОМТЕХ	(СТАНДАРТ	Γ				
PKO						
НАКС (группы технических устройств: ГДО, ГО, КО, МО, НГДО, ОТОГ, ОХНВП, ПТО, СК)						
Химический состав наплавленного металла, %						
C Mn Si S P						
≤0,12	0,4-0,7	≤0,30	≤0,040	≤0,045		

Классификация и одобрения

Механические свойства наплавленного металла

Химический состав наплавленного металла, %

Предел текучести, МПа 400
Предел прочности на разрыв, МПа, не менее
Относительное удлинение, %, не менее 18

Ударная вя:	зкость KCV
Температура	Дж/см ²
при -20°C	>35
	I/OU
Ударная вязкост	ь КСО, не менее
Температура	Дж/см²
при +20°C	78
Коэффициент наплавки,	Расход электродов на
г/А*ч	1 кг наплавленного
	металла, кг
9	1,7

Ток	~, = (+)
Пространственные положения	1, 2, 3, 4, 5, 6
Напряжение холостого хода	50
источника переменного тока, V	30
Режим прокалки	90°C – 0,5 часа

Информация по упаковке			Режи	мы сварочного	тока
			(Сварочный ток, л	Ą
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально	Потолочное
			пижнее	снизу-вверх	ПОТОЛОЧНОЕ
2,5	350	1,0; 3,0; 5,2	40-100	40-90	40-95
3,0	350	1,0; 3,0; 5,5	40-140	40-120	40-130
4,0	450	1,0; 3,0; 6,8	90-200	100-190	100-190
5,0	450	1,0; 3,0; 7,0	140-270	140-250	150-260

широких зазоров.

Электроды для сварки углеродистых и низколегированных сталей

GOODEL-OK46

Описание
Электроды с рутилово-целлюлозным видом покрытия предназначены для сварки рядовых и ответственных конструкций из углеродистых и низколегированных сталей с временным сопротивлением разрыву до 451 МПа. Применяются для

прихваток, корневых швов, заварки

Электроды характеризуются высокими сварочнотехнологическими свойствами: легким возбуждением дуги, стабильностью её горения во время процесса сварки, легкой отделяемостью шлаковой корки, хорошим формированием сварного шва и низкой чувствительностью к окисленной поверхности.

Сварка производится дугой средней длины.

Сварка может выполняться как на переменном, так и на постоянном токе.

ΓΟCT 9466-75, ΓΟCT 9467-75 ΤУ 1272-002-11040008-2001 <u> Э46 – GOODEL-OK46 – Ø – УД</u> Е 430(3) – РЦ 11

Классификация и одобренияПРОМТЕХСТАНДАРТ

РКО

НАКС (группы технических устройств: ГДО, ГО, КО, МО, НГДО, ОТОГ, ОХНВП, ПТО, СК)

 Химический состав наплавленного металла, %

 С
 Mn
 Si
 S
 P

 ≤0,12
 0,4-0,7
 ≤0,30
 ≤0,040
 ≤0,045

 Химический состав наплавленного металла, %

Механические свойства наплавленного металла

Предел текучести, МПа 400
Предел прочности на разрыв, МПа, не менее
Относительное удлинение, %, не менее 18

Ударная вязкость KCV				
Температура	Дж/см ²			
при -20°C	>35			
Ударная вязкост	ь KCU, не менее			
Температура	Дж/см²			
при +20°C	78			
Коэффициент наплавки,	Расход электродов на			
г/А*ч	1 кг наплавленного			
	металла, кг			
9	1,7			

Ток	~, = (+)
Пространственные положения	1, 2, 3, 4, 5, 6
Напряжение холостого хода	50
источника переменного тока, V	50
Режим прокалки	90°C – 0,5 часа

Информация по упаковке		Реж	имы сварочного	тока	
				Сварочный ток,	A
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально	Потолочное
			пижнее	снизу-вверх	ПОТОЛОЧНОЕ
2,5	350	1,0; 3,0; 5,2	60-100	60-90	60-95
3,0	350	1,0; 3,0; 5,5	70-140	70-130	70-120
4,0	450	1,0; 3,0; 6,8	160-180	120-150	120-150
5,0	450	1,0; 3,0; 7,0	180-220	150-180	-
6,0	450	1,0; 3,0; 7,0	200-280	-	-

GOODEL AHO-4

ГОСТ 9466-75, ГОСТ 9467-75 ТУ 25.93.15-014-11040008-2021 <u> Э46 – GOODEL AHO-4 – Ø – УД</u> E 430(3) – РЦ 11

18

Описание

Электроды с рутилово-целлюлозным видом покрытия предназначены для сварки конструкций из углеродистых сталей с нормативным временным сопротивлением разрыву не более 451 МПа.

Электроды характеризуются высокими сварочнотехнологическими свойствами: легким возбуждением дуги, стабильностью её горения во время процесса сварки, легкой отделяемостью шлаковой корки, хорошим формированием сварного шва и низкой чувствительностью к окисленной поверхности.

Сварку производят дугой средней длины на переменном или постоянном токе любой полярности.

Химичес	кий состав	наплавле	нного мет	алла, %		
С	Mn	Si	S	Р		
≤0,12	0,30-0,70	≤0,30	≤0,040	≤0,040		
Химичес	кий состав	наплавле	нного мет	алла, %		
Mexa	нические с	войства н	аплавлен	ного		
металла						
Предел те	350					
Предел п	451					
менее						

Относительное удлинение. %, не менее

Классификация и одобрения

Ударная вязкость KCV			
Температура	Дж/см ²		
при -20°C >34			
Ударная вязкост	ь KCU, не менее		
Температура	Дж/см²		
при +20°C 78			
Коэффициент наплавки,	Расход электродов на		
г/А*ч	1 кг наплавленного		
	металла, кг		
9	1,7		

1

Ток	~, = (+)
Пространственные положения	1, 2, 3, 4, 5, 6
Напряжение холостого хода	50
источника переменного тока, V	50
Режим прокапки	90°C – 1 час

2

Информация по упаковке		Режимы сварочного тока			
	Длина, мм Вес пачки, кг		(Сварочный ток,	A
Диаметр, мм		Нижнее	Вертикально	Потолочное	
			Пижнее	снизу-вверх	ПОТОЛОЧНОЕ
2,5	350	1,0; 2,5; 5,0	60-100	60-95	60-90
3,0	350	1,0; 2,5; 5,0	70-140	70-130	70-120
4,0	450	1,0; 2,5; 6,2	100-200	100-190	100-180
5,0	450	1,0; 2,5; 6,8	150-270	150-260	150-250
6,0	450	1,0; 2,5; 7,0	250-300	-	-

GOODEL MP-3

ГОСТ 9466-75, ГОСТ 9467-75 ТУ 25.93.15-014-11040008-2021 <u> 346 – GOODEL MP-3 – Ø – УД</u> E 430(3) – РЦ 11

Описание

Электроды с рутилово-целлюлозным видом покрытия предназначены для сварки конструкций из углеродистых сталей с нормативным временным сопротивлением разрыву не более 451 МПа.

Электроды характеризуются высокими сварочнотехнологическими свойствами: легким возбуждением дуги, стабильностью её горения во время процесса сварки, легкой отделяемостью шлаковой корки, хорошим формированием сварного шва и низкой чувствительностью к окисленной поверхности.

Сварку производят дугой средней длины на переменном или постоянном токе любой полярности.

ПРОМТЕХСТАНДАРТ

НАКС (группы технических устройств: ГДО, ГО, КО, МО, НГДО, ОТОГ, ОХНВП, ПТО, СК)

Классификация и одобрения

Химичес	кий состав	наплавле	нного мет	алла, %
С	Mn	Si	S	Р
≤0,12	0,30-0,70	≤0,30	≤0,040	≤0,040

Химический состав наплавленного металла, %

Механические свойства наплавленного метаппа

Предел текучести, МПа, не менее 350
Предел прочности на разрыв, МПа, не 451
менее
Относительное удлинение, %, не менее 18

Ударная вязкость KCV			
Температура Дж/см²			
при -20°C	>34		
Ударная вязкост	ь КСИ, не менее		
Температура	Дж/см²		
при +20°C	78		
Коэффициент наплавки,	Расход электродов на		
г/А*ч	1 кг наплавленного		
	металла, кг		
9	1,7		

Ток	~, = (+)
Пространственные положения	1, 2, 3, 4, 5, 6
Напряжение холостого хода	50
источника переменного тока, V	30
Режим прокалки	90°C – 1 час

Информация по упаковке			Режи	мы сварочного	о тока
			(Сварочный ток,	A
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально снизу-вверх	Потолочное
2,5	350	1,0; 2,5; 5,0	60-100	60-95	60-90
3,0	350	1,0; 2,5; 5,0	70-140	70-130	70-120
4,0	450	1,0; 2,5; 6,2	100-200	100-190	100-180
5,0	450	1,0; 2,5; 6,8	150-270	150-260	150-250
6,0	450	1,0; 2,5; 7,0	250-300	-	-

GOODEL MP-3C

ГОСТ 9466-75, ГОСТ 9467-75 ТУ 25.93.15-014-11040008-2021 <u> Э46 – GOODEL MP-3C – Ø – УД</u> E 430(3) – РЦ 11

Описание

Электроды с рутилово-целлюлозным видом покрытия предназначены для сварки конструкций из углеродистых сталей с нормативным временным сопротивлением разрыву не более 451 МПа.

Электроды характеризуются высокими сварочнотехнологическими свойствами: легким возбуждением дуги, стабильностью её горения во время процесса сварки, легкой отделяемостью шлаковой корки, хорошим формированием сварного шва и низкой чувствительностью к окисленной поверхности.

Сварку производят дугой средней длины на переменном или постоянном токе любой полярности.

классификация и	и од	oop	ения

Химический состав наплавленного металла, %				
С	Mn	Si	S	Р
≤0,12	0,30-0,70	≤0,30	≤0,040	≤0,040
Химический состав наплавленного металла, %				

Механические свойства наплавленного

ino rasista	
Предел текучести, МПа, не менее	350
Предел прочности на разрыв, МПа, не	451
менее	
Относительное удлинение, %, не менее	18

Ударная вязкость KCV			
Температура	Дж/см ²		
при -20°C	>34		
Ударная вязкост	ъ КСU, не менее		
Температура	Дж/см²		
при +20°C	78		
Коэффициент наплавки,	Расход электродов на		
г/А*ч	1 кг наплавленного		
	металла, кг		
9	1,7		

Ток	~, = (+)
Пространственные положения	1, 2, 3, 4, 5, 6
Напряжение холостого хода	50
источника переменного тока, V	50
Режим прокалки	90°C – 1 час

Информация по упаковке			Режи	мы сварочного	о тока		
				Сва		Сварочный ток, л	A
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально снизу-вверх	Потолочное		
				, ,			
2,5	350	1,0; 2,5; 5,0	60-100	60-95	60-90		
3,0	350	1,0; 2,5; 5,0	70-140	70-130	70-120		
4,0	450	1,0; 2,5; 6,2	100-200	100-190	100-180		
5,0	450	1,0; 2,5; 6,8	150-270	150-260	150-250		
6,0	450	1,0; 2,5; 7,0	250-300	-	-		

9

MP-3 construction		75, FOCT 9467- 2-11040008-200	75 <u>S</u>	946 – MP-3 – Ø E 431(3) – P	
Описание		Классифи	кация и од	цобрения	
Электроды с рутиловым видом		(СТАНДАР			
покрытия предназначены для сварки рядовых и ответственных	НАКС (группы технических устройств: ГДО, МО, НГДО, ОТОГ, ОХНВП, ПТО, СК)				, ГО, КО,
конструкций из углеродистых и	Химичес	кий состав	наплавле	енного мет	алла, %
низколегированных сталей, с	С	Mn	Si	S	Р
временным сопротивлением разрыву	≤0,12	0,4-0,7	≤0,30	≤0,040	≤0,045
до 490 МПа. Электроды	Химический состав наплавленного металла, %				
обеспечивают лёгкое перекрытие					
зазоров при сварке на монтаже.					
Chanka bi idadilidatad kanatkaŭ divisaŭ	Механические свойства наплавленного				
Сварка выполняется короткой дугой по тщательно очищенной от			металла		
загрязнений поверхности на	Предел текучести, МПа				390
переменном или на постоянном токе	Предел прочности на разрыв, МПа, не				450
обратной полярности.	менее				
oopariion iiompiioom.	Относител	тьное удлин	нение, %, н	е менее	18
		•	•	•	
		Ударна	я вязкост	ь KCV	

ударная вязкость КСУ				
Температура	Дж/см ²			
при -20°C	>35			
Ударная вязкост	ь KCU, не менее			
Температура	Дж/см ²			
при +20°С	80			
Коэффициент наплавки,	Расход электродов на			
г/А*ч	1 кг наплавленного			
	металла, кг			
7,5	1,7			

Ток	~, = (+)
Пространственные положения	1, 2, 3, 4, 6
Напряжение холостого хода	50
источника переменного тока, V	50
Режим прокалки	170°C – 1,5 часа

Информация по упаковке			Режимы сварочного тока		
			Сварочный ток, А		
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально снизу-вверх	Потолочное
2,5	350	1,0; 2,5; 5,0	70-100	60–90	60–90
3,0	350	1,0; 2,5; 5,0	80-120	70-90	70-90
4,0	450	1,0; 2,5; 6,2	160-200	120-150	120-150
5,0	450	1,0; 2,5; 6,8	160-250	160-230	160-240
6,0	450	1,0; 2,5; 7,0	280-320	-	-

электроды для сварки углероди	стых и ни	зколегиро	ванных	Сталеи		
AHO-4	ГОСТ 9466-75, ГОСТ 9467-75 ТУ 1272-002-11040008-2001 <u>Э46 – АНО-4</u> Е 432(3) -		946 – AHO-4 – E 432(3) - P	<u>Ø – УД</u> 21		
Описание	Классификация и одобрения					
Электроды с рутиловым видом покрытия предназначены для сварки	ПРОМТЕХ	КСТАНДАРТ	-			
рядовых и ответственных конструкций из углеродистых и						
низколегированных сталей с	Химичес	кий состав	наплавл	енного мет	галла. %	
временным сопротивлением разрыву	С	Mn	Si	S	P	
до 451 МПа.	≤0,12	0,4-0,7	≤0,30	≤0,040	≤0,045	
Сварка во всех пространственных положениях кроме «вертикального	Химичес	кий состав	наплавл	енного мет	галла, %	
сверху вниз».						
Электроды характеризуются высокими сварочно-	Механические свойства наплавленного металла					
технологическими свойствами:	1 11			390		
легким возбуждением дуги, стабильностью её горения во время	менее				450	
процесса сварки, легкой	Относительное удлинение, %, не менее 18					
отделяемостью шлаковой корки, хорошим формированием сварного	Ударная вязкость KCV					
шва и низкой чувствительностью к	Температура			Дж/см²		
окисленной поверхности .	пр	и -20°C		>35		
Сварка производится дугой средней						
длины.	У	дарная вяз	кость КС	U. не мене	e	
		пература		Дж/см		
Сварка может выполняться как на	пр	и +20°C		78		
переменном, так и на постоянном токе любой полярности.						
токе люоой полярности.	Козффил	иент наплав	avu Pa	сход элект	опов на	
	Кооффиц	г/А*ч		кг наплавл металла	енного	
				iiio rajijic	ι, ινι	

Ток	~, = (+;-)
Пространственные положения	1, 2, 3, 4, 6
Напряжение холостого хода	50
источника переменного тока, V	50
Режим прокалки	170°С – 1,5 часа

8,5

1.7

Информация по упаковке			Режи	мы сварочного	тока
			Сварочный ток, А		
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально	Потолочное
		Thinates	TIVIXITOO	снизу-вверх	11010310 11100
2,5	350	1,0; 2,5; 5,0	60-100	60–95	60–90
3,0	350	1,0; 2,5; 5,0	80-120	70-90	70-90
4,0	450	1,0; 2,5; 6,2	160-180	120-150	120-150
5,0	450	1,0; 2,5; 6,8	180-220	150-180	-
6,0	450	1,0; 2,5; 7,0	220-280	-	-

FOCT 9466-75, FOCT 9467-75 342 - AHO-6 - Ø - УД AHO-6 TY 1272-002-11040008-2001 E 412(3) - P 21 Классификация и одобрения ПРОМТЕХСТАНДАРТ Электроды с рутиловым видом покрытия предназначены для сварки металлоконструкций из низкоуглеродистых марок сталей с временным сопротивлением разрыву Химический состав наплавленного металла. % до 430 МПа. Mn Si ≤0.20 ≤0.12 0.4-0.6 ≤0.040 ≤0.045 Сварка во всех пространственных Химический состав наплавленного металла. % положениях кроме «вертикального сверху вниз». Механические свойства наплавленного Электроды характеризуются металла высокими сварочно-Предел текучести. МПа 360 технологическими свойствами, низкой Предел прочности на разрыв, МПа, не 412 склонностью к образованию пор и менее кристаллизационных трещин. Относительное удлинение, %, не менее 18 Сварка может выполняться как на Ударная вязкость KCV переменном, так и на постоянном Дж/см² Температура токе любой полярности. при -20°C >35 Ударная вязкость KCU, не менее Температура $Дж/см^2$ при +20°C 78 Коэффициент наплавки, Расход электродов на г/А*ч 1 кг наплавленного

Ток	~, = (+;-)
Пространственные положения	1, 2, 3, 4, 6
Напряжение холостого хода	50
источника переменного тока, V	50
Режим прокалки	170°C – 1,5 часа

10

металла. кг

1.6

Информация по упаковке			Режи	мы сварочного	тока
			Сварочный ток, А		
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально снизу-вверх	Потолочное
2,5	350	1,0; 2,5; 5,0	70-100	60–90	60–90
3,0	350	1,0; 2,5; 5,0	80-140	70-90	70-90
4,0	450	1,0; 2,5; 6,2	160-200	120-150	120-150
5,0	450	1,0; 2,5; 6,8	180-270	150-180	-
6,0	450	1,0; 2,5; 7,0	280-350	-	-

ГОСТ 9466-75. ГОСТ 9467-75

AHO-11 ТУ 1272-002-11040008-2001 Е 515 – Б 26 Описание Классификация и одобрения ПРОМТЕХСТАНДАРТ Электроды с основным покрытием предназначены для сварки ответственных конструкций из низкоуглеродистых, среднеуглеродистых и

низколегированных сталей, работающих в условиях статических и динамических знакопеременных нагрузок. Электроды обладают высокой

производительностью и высокими сварочно-технологическими свойствами. Рекомендуются для сварки конструкций из толстолистового металла и сортового проката.

Сварка выполняется короткой дугой по зачищенным кромкам во всех пространственных положениях кроме «вертикального сверху вниз» на постоянном токе обратной полярности.

Химичес	кий состав	наплавле	нного мет	алла, %	
С	Mn	Si	S	Р	
≤0,10	0,8-1,2	≤0,60	≤0,030	≤0,035	
Химичес	кий состав	наплавле	нного мет	алла, %	
Механические свойства наплавленного					
металла					
Предел текучести, МПа 460					
Предел прочности на разрыв, МПа, не 490					
менее					
Относител	Относительное удлинение, %, не менее 20				

Э50A - АНО-11 - Ø - УД

Ударная вязкость KCV						
Температура	Дж/см²					
при -40°C	>35					
Ударная вязкост	ь KCU, не менее					
Температура	Дж/см²					
при +20°С	127					
Коэффициент наплавки,	Расход электродов на					
г/А*ч	1 кг наплавленного					
	металла, кг					
9,5	1,6					

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	350°C – 1 час

Информация по упаковке		Режимы сварочного тока			
			Сварочный ток, А		
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально	Потолочное
		Пижнее	снизу-вверх	ПОТОЛОЧНОЕ	
3,0	350	1,0; 2,5; 4,7	100-140	100-110	120-130
4,0	450	1,0; 2,5; 6,0	170-200	130-150	150-170
5,0	450	1,0; 2,5; 6,5	240-270	160-180	170-190

AHO-21

ΓΟCT 9466-75, ΓΟCT 9467-75 ΤУ 1272-002-11040008-2001 <u>Э46 – АНО-21 – Ø – УД</u> Е 435 – РЦ 11

Описание

Электроды с рутилово-целлюлозным видом покрытия предназначены для сварки рядовых и ответственных конструкций из углеродистых сталей марок: по ГОСТ 380 (Ст0, Ст1, Ст2, Ст3 – всех трех групп А, Б, В и всех степеней раскисления – «кп», «пс», «сп»); по ГОСТ 1050 (10, 15кп, 20кп, 20пс, 20). Рекомендуются также для сварки металлоконструкций, когда к формированию швов в различных пространственных положениях предъявляются повышенные требования.

Электроды характеризуются высокими сварочнотехнологическими свойствами, легкой отделимостью шлаковой корки.

Допускается сварка удлинённой дугой, и сварка по окисленной поверхности. Сварка выполняется на переменном токе или постоянном токе обратной полярности.

ПРОМТЕХСТАНДАРТ

•		•				
Химичес	ский состав	наплавле	нного мет	алла, %		
С	Mn	Si	S	Р		
≤0,12	0,4-0,7	≤0,30	≤0,040	≤0,045		
Химический состав наплавленного металла, %						

Классификация и одобрения

Механические свойства наплавленного			
металла			
Предел текучести, МПа	390		
Предел прочности на разрыв, МПа, не менее	451		
Относительное удлинение, %, не менее	18		

Ударная вязкость KCV					
Температура	Дж/см²				
при -40°C	>35				
Ударная вязкост	ь KCU, не менее				
Температура	Дж/см ²				
при +20°C	78				
Коэффициент наплавки,	Расход электродов на				
г/А*ч	1 кг наплавленного				
	металла, кг				
10	1,6				

Ток	~, = (+)
Пространственные положения	1, 2, 3, 4, 5, 6
Напряжение холостого хода	50
источника переменного тока, V	50
Режим прокалки	90°C – 0,5 часа

Информация по упаковке			Режимы сварочного тока			
			Сварочный ток, А			
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально снизу-вверх	Потолочное	
2,5	350	1,0; 3,0; 5,2	60-100	60-90	60-95	
3,0	350	1,0; 3,0; 5,5	80-120	70-90	70-90	
4,0	450	1,0; 3,0; 6,8	160-180	120-150	120-150	
5,0	450	1,0; 3,0; 7,0	180-220	150-180	-	
6,0	450	1,0; 3,0; 7,0	200-280	-	-	

MD₂

Электроды для сварки углеродистых и низколегированных сталей

FOCT 9466-75, FOCT 9467-75

WP-3	ТУ 1272-00	2-11040008-200	1	E 431(3) – P	26	
Описание	Классификация и одобрения					
Электроды с рутиловым видом	ПРОМТЕХСТАНДАРТ					
покрытия предназначены для сварки		ппы технич			, ГО, КО,	
рядовых и ответственных	мо, нгдо), ОТОГ, ОХ	НВП, ПТО	, CK)		
конструкций из углеродистых и						
низколегированных сталей, с						
временным сопротивлением разрыву	ЗУ Химический состав наплавленного металл					
до 490 МПа. Электроды	С	Mn	Si	S	Р	
обеспечивают лёгкое перекрытие	≤0,12	0,4-0,7	≤0,30	≤0,040	≤0,045	
зазоров при сварке на монтаже.	Химичес	кий состав	наплавле	енного мет	алла, %	
Сварка выполняется короткой дугой						
по тщательно очищенной от						
загрязнений поверхности на	Механические свойства наплавленного металла					
переменном или на постоянном токе						
обратной полярности.		екучести, МГ			390	
i i	I Decree 5		naani in M	100	450	

менее

Ударная вязкость KCV				
Температура	Дж/см²			
при -20°C	>35			
Ударная вязкость КСU, не менее				
Температура	Дж/см ²			
при +20°C	80			
Коэффициент наплавки,	Расход электродов на			
г/А*ч	1 кг наплавленного			
	металла, кг			
7.5	1.7			

Предел прочности на разрыв, МПа, не

Относительное удлинение, %, не менее

<u> Э46 – MP-3 – Ø – УД</u>

450

18

Ток	~, = (+)
Пространственные положения	1, 2, 3, 4, 6
Напряжение холостого хода	50
источника переменного тока, V	50
Режим прокалки	170°C – 1,5 часа

Информация по упаковке			Режимы сварочного тока		
			(Сварочный ток, л	A
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально	Потолочное
		пижнее	снизу-вверх	ПОТОЛОЧНОЕ	
2,5	350	1,0; 2,5; 5,0	70-100	60–90	60–90
3,0	350	1,0; 2,5; 5,0	80-120	70-90	70-90
4,0	450	1,0; 2,5; 6,2	160-200	120-150	120-150
5,0	450	1,0; 2,5; 6,8	160-250	160-230	160-240
6,0	450	1,0; 2,5; 7,0	280-320	-	-

МР-3С (синие)

ГОСТ 9466-75, ГОСТ 9467-75 ТУ 1272-002-11040008-2001

<u>Э46 – MP-3C – Ø – УД</u> Е 431(3) – Р 26

Описание	Классификация и одобрения					
Электроды с рутиловым видом	ПРОМТЕХСТАНДАРТ					
покрытия предназначены для сварки						
рядовых и ответственных						
конструкций из углеродистых и						
низколегированных сталей, с временным сопротивлением разрыву	Химический состав наплавленного металла, %					
до 490 МПа.	C	Mn	Si	S	Р.	
до 400 МПа.	≤0,12	0,4-0,7	≤0,30	≤0,040	≤0,045	
Обладают высокими сварочно-	химичес	кий состав	наплавле	нного мет	алла, %	
технологическими свойствами.						
Обеспечивают легкое перекрытие	Meya	нические с	ройства н	эппэрпац	HOLO	
зазоров при сварке на монтаже.	Wicka		металла	annabnem	1010	
Сварка выполняется короткой дугой по тщательно очищенной от загрязнений поверхности, на переменном токе или на постоянном	Предел те	Предел текучести, МПа			390	
	Предел прочности на разрыв, МПа, не			450		
	менее					
	Относительное удлинение, %, не менее				18	
токе обратной полярности.						
	Ударная вязкость КСV					
	Тем		Дж/см²			
	при -20°C			>35		
	V	дарная вяз	кость KCI	I не мене	<u> </u>	
		пература	NOOIB IXO	Дж/см		
		и +20°C		80		
				<u> </u>	<u> </u>	
	Коэффициент наплавки,			Расход электродов на		
		г/А*ч	1	1 кг наплавленного		
		7,5		металла 1,7	, KI	
	I	1,0	ı	1,7		

Ток	~, = (+)
Пространственные положения	1, 2, 3, 4, 6
Напряжение холостого хода	50
источника переменного тока, V	30
Режим прокалки	170°C – 1,5 часа

Информация по упаковке			Режи	мы сварочного	тока
			·	Сварочный ток, л	Ą
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально	Потолочное
			пижнее	снизу-вверх	ПОТОЛОЧНОЕ
2,5	350	1,0; 2,5; 5,0	70-100	60–90	60–90
3,0	350	1,0; 2,5; 5,0	80-120	70-90	70-90
4,0	450	1,0; 2,5; 6,2	160-200	120-150	120-150
5,0	450	1,0; 2,5; 6,8	160-250	160-230	160-240
6,0	450	1,0; 2,5; 7,0	280-320	-	-

электроды для сварки углероди	CIDIX N HN	SKOTIE! NIPC	bannoix	Clasica	
O3C-4	ГОСТ 9466-75, ГОСТ 9467-75 ТУ 1272-002-11040008-2001 <u>946 – ОЗС-4 – Ø – УД</u> Е 430(3) – Р 25			<u> 25</u> 25	
Описание		Классифи	кация и од	добрения	
Электроды с рутиловым видом покрытия предназначены для сварки рядовых и ответственных	ПРОМТЕ	КСТАНДАРТ	Γ		
конструкций из углеродистых и					
низколегированных сталей, с	Химичес	кий состав	наппавле	енного мет	аппа. %
временным сопротивлением разрыву	C	Mn	Si	S	P
до 451 МПа. Обеспечивают легкое	≤0,12	0,4-0,7	≤0,30	≤0,040	≤0,045
перекрытие зазоров.	Химичес	кий состав	наплавле	енного мет	алла, %
Попускаетоя орорка уплинайный пугой					
Допускается сварка удлинённой дугой и по окисленной поверхности.					
и по окноленной поверхности.	Механические свойства наплавленного				
Сварка выполняется на переменном	металла				
токе или на постоянном токе	Предел текучести, МПа 390				
обратной полярности.	Предел прочности на разрыв, МПа, не 450 менее				
	Относительное удлинение, %, не менее 18				
	Стпосительное удлинение, и, не менее				
	Ударная вязкость КС V				
	Температура Дж/см²			2	
	при -20°C			>35	
	Ударная вязкость KCU, не менее				
	Температура Дж/см²			2	
	пр	и +20°C		80	
	Козффии	иент наплав	Par Par	сход элект	опов на
	Кооффиц	г/А*ч		кг наплавл	• •

Ток	~, = (+)
Пространственные положения	1, 2, 3, 4, 6
Напряжение холостого хода	50
источника переменного тока, V	50
Режим прокалки	170°С – 1,5 часа

9,0

металла, кг

1.7

Информация по упаковке		Режи	мы сварочного	тока	
			(Сварочный ток, л	A
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально	Потолочное
			пижнее	снизу-вверх	ПОТОЛОЧНОЕ
2,5	350	1,0; 2,5; 5,0	70-100	60–90	60–90
3,0	350	1,0; 2,5; 5,0	80-120	70-90	70-90
4,0	450	1,0; 2,5; 6,2	160-200	120-150	120-150
5,0	450	1,0; 2,5; 6,8	160-250	160-230	160-240
6,0	450	1,0; 2,5; 7,0	280-320	-	-

Электроды для сварки углеродистых и низколегированных сталей

O3C-6		ГОСТ 9466-75, ГОСТ 9467-75 ТУ 1272-002-11040008-2001 <u>Э46 — ОЗС-6 — Ø — УД</u> Е 430 — РЖ 23			
Описание		Классифи	кация и од	добрения	
Электроды с рутиловым видом	ПРОМТЕ	КСТАНДАР	Γ		
покрытия (в покрытии свыше 20%					
железного порошка) предназначены					
для сварки рядовых и ответственных					
конструкций из углеродистых и	Химичес	кий состав	наплавле	енного мет	галла, %
низколегированных сталей, с	С	Mn	Si	S	Р
временным сопротивлением разрыву	≤0,12	0,4-0,7	≤0,30	≤0,040	≤0,045
до 490 МПа. Обеспечивают легкое	Химический состав наплавленного металла, %				
перекрытие зазоров.					
Электроды обладают высокой					
производительностью и хорошими	Mexa	нические с	войства н	аплавлен	ного
сварочно-технологическими			металла		
свойствами. Рекомендуются для	Предел текучести, МПа				400
сварки конструкций из	Предел прочности на разрыв, МПа, не				450
толстолистового и сортового проката.	менее				
	Относительное удлинение, %, не менее 18				18
Допускается сварка удлинённой дугой					
и по окисленной поверхности.	Ударная вязкость KCV				

и по окисленной поверхности.	Ударная вязкость KCV			
	Температура	Дж/см²		
Сварка выполняется на переменном или на постоянном токе обратной полярности.	при -20°C	не регламентирована		
полирности.	Ударная вязкості	ь КСU, не менее		
	Температура	Дж/см ²		
	при +20°C	78		
	Коэффициент наплавки, г/А*ч	Расход электродов на 1 кг наплавленного металла, кг		
	10	1,7		

Ток	~, = (+)
Пространственные положения	1, 2, 3, 4, 6
Напряжение холостого хода	50
источника переменного тока, V	50
Режим прокалки	170°C – 1,5 часа

Информация по упаковке			Режи	мы сварочного	тока
			(Сварочный ток, л	Ą
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально	Потолочное
			пижнее	снизу-вверх	ПОТОЛОЧНОЕ
3,0	350	1,0; 2,5; 5,0	80-110	60–90	70-100
4,0	450	1,0; 2,5; 5,0	170-220	130-150	140-170
5,0	450	1,0; 2,5; 5,0	220-280	150-170	-
6,0	450	1,0; 2,5; 5,0	300-350	-	-

GOODEL K65

ГОСТ 9466-75, ГОСТ 9467-75 ТУ 25.93.15-016-11040008-2022 <u>Э70A – GOODEL K65 – Ø –УД</u> Е 11Г2НМ 4 – Б 20

Описание Электроды с основным видом покрытия предназначены для сварки ответственных конструкций из углеродистых и низколегированных сталей, работающих при отрицательных температурах и знакопеременных нагрузках, а также для сварки трубопроводов из сталей класса прочности до K65.

Сарка выполняется короткой дугой по тщательно очищенной от ржавчины, окалины, масла и других загрязнений поверхности во всех пространственных положениях, кроме вертикального «сверху вниз» на постоянном токе обратной полярности.

Химичес	кий состав	наплавле	нного мет	алла, %
С	Mn	Si	Ni	Мо
<∩ 11	1525	0207	0510	0.400

Классификация и одобрения

≤0,11	1,5-2,5	0,3-0,7	0,5-1,0	0,4-0,8	
Химичес	кий состав	наплавле	нного мет	алла, %	
S	Р				
≤0,025	≤0,025				
Моханические срейства направленного					

Механические свойства наплавленного металла

Предел текучести, МПа, не менее 555
Предел прочности на разрыв, МПа, не менее
Относительное удлинение, %, не менее 18

Ударная вязкость KCV					
Температура Дж/см²					
при -40°С	>55				
Ударная вязкост	ъ КСИ, не менее				
Температура	Дж/см ²				
при +20°С	100				
Koododowy war war and and	Росуол опоутролов но				
Коэффициент наплавки,	Расход электродов на				
г/А*ч	1 кг наплавленного				
	металла, кг				
9,5	1,6				

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	350°C – 1 час

Информация по упаковке			Режимы сварочного тока		
			(Сварочный ток, л	4
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально снизу-вверх	Потолочное
0.5	050	40.05.45	00.05	, ,	00.05
2,5	350	1,0; 2,5; 4,5	60-95	60-90	60-85
3,0	350	1,0; 2,5; 4,7	80-130	80-120	80-130
4,0	450	1,0; 2,5; 5,0	115-190	115-180	115-190
5,0	450	1,0; 2,5; 5,0	170-220	170-210	170-220

GOODEL-52U

ГОСТ 9466-75, ГОСТ 9467-75 ТУ 25.93.15-009-11040008-2018 <u> Э50A – GOODEL-52U – Ø – УД</u> E 516 – Б 10

Описание
Электроды с основным видом
покрытия предназначены для сварки
корневого шва поворотных и
неповоротных стыков трубопроводов
класса прочности до К60
включительно (с нормативным
временным сопротивлением разрыву
до 588 МПа включительно), а также
для сварки всех слоев шва
трубопроводов класса прочности до
К54 включительно (с нормативным
пределом прочности до 539 МПа).

Металл шва характеризуется низким содержанием водорода и высокой стойкостью против образования кристаллизационных трещин.

Сварка выполняется короткой дугой по тщательно очищенной от ржавчины, окалины, масла и других загрязнений поверхности, во всех пространственных положениях на постоянном токе обратной полярности.

Классификация и одобренияПРОМТЕХСТАНДАРТ

НАКС (группы технических устройств: ГДО, ГО, КО, МО, НГДО, ОТОГ, ОХНВП, ПТО, СК)

Химический состав наплавленного металла, %				
С	Mn	Si	S	Р
≤0,11 0,85-1,35 0,30-0,70 ≤0,030 ≤0,030				
Уиминоский состав направленного мотапла %				

Предел текучести, МПа, не менее 400
Предел прочности на разрыв, МПа, не 510
менее
Относительное удлинение, %, не менее 22

Ударная вязкость KCV				
Температура	Дж/см²			
при -50°C	>34			
Ударная вязкост	ь КСИ, не менее			
Температура	Дж/см²			
при +20°C	150			
Коэффициент наплавки,	Расход электродов на			
г/А*ч	1 кг наплавленного			
	металла, кг			
10	1,6			

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 5, 6
Режим прокалки	350°С – 1 час

Информация по упаковке			Режимы сварочного тока			
		Сварочный		Сварочный ток, л	4	
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально	Потолочное	
			пижнее	снизу-вверх	ПОТОЛОЧНОЕ	
2,5	350	1,0; 2,5; 5,0	60-95	60-90	60-85	
3,0	350	1,0; 2,5; 5,0	80-130	80-120	80-130	
4,0	450	1,0; 2,5; 6,0	115-190	115-180	115-190	

GOODEL-OK48

FOCT 9466-75, FOCT 9467-75

<u>Э50A – GOODEL-OK48 – Ø – УД</u> Е 514 – Б 20

Описание		Классифи	кация и с	одобрения	
Электроды с основным видом					
покрытия предназначены для сварки					
ответственных конструкций из					
низкоуглеродистых и					
низколегированных сталей,	Химичес	кий состав	наплавл	тенного мет	алла, %
работающих при отрицательных	С	Mn	Si	S	Р
температурах и знакопеременных	≤0,11	0,90-1,20	≤0,60	≤0,030	≤0,035
нагрузках.	Химичес	кий состав	наплавл	тенного мет	галла, %
Электроды обладают высокой					
производительностью и хорошими					
сварочно-технологическими	Mexa	нические с	войства	наплавлен	ного
свойствами. Рекомендуются для			металла		
сварки конструкций из толстостенного листового и сортового проката.	Предел текучести, МПа 46			460	
	Предел прочности на разрыв, МПа, не 490				
	менее				
Металл шва характеризуется низким	Относительное удлинение, %, не менее 20				20
содержанием водорода и высокой					
стойкостью против образования	Ударная вязкость KCV				
кристаллизационных трещин.		пература		Дж/см	2
	пр	ои -40°C		>35	
Сварка выполняется короткой дугой					
по тщательно очищенной от					
загрязнений поверхности, на	У	дарная вяз	кость КО	CU, не мене	е
постоянном токе обратной	Тем	пература		Дж/см	2
полярности.	пр	и +20°C		127	
	Коэффиц	иент наплаі	вки, Р	асход элект	оодов на
	г/А*ч			1 кг наплавл	енного
				металла	I, КГ
		9,5		1,6	

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	350°С – 1 час

Информация по упаковке			Режимы сварочного тока			
			(Сварочный ток, л	4	
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально	Потолочное	
			пижнее	снизу-вверх	ПОТОЛОЧНОЕ	
3,0	350	1,0; 2,5; 4,7	100-140	100-110	120-130	
4,0	450	1,0; 2,5; 6,0	170-200	130-150	150-170	
5,0	450	1,0; 2,5; 6,5	240-270	160-180	170-190	

ТМУ-21У

Описание

ГОСТ 9466-75, ГОСТ 9467-75 ТУ 1272-002-11040008-2001

Классификация и одобрения

<u>Э50A – ТМУ-21У – Ø – УД</u> Е 513 – Б 20

Электроды с основным видом	ПРОМТЕХСТАНДАРТ				
покрытия предназначены для сварки					
металлоконструкций и					
трубопроводов, а также					
энергетического оборудования	Химичес	кий состав	наплавле	нного мет	алла, %
электростанций из углеродистых и	С	Mn	Si	S	P
низколегированных (типа 15ГС)	≤0,11	0,7-1,2	≤0,70	≤0,030	≤0,035
сталей.	Химичес	кий состав	наплавле	нного мет	алла, %
Допускают сварку в узкие разделки с общим углом скоса кромок не менее					
оощим углом скоса кромок не менее 15°.	Mexa	нические с	войства н	аплавлені	ного
15 .			металла		
Сварка выполняется короткой дугой по тщательно очищенной от загрязнений поверхности, на	Предел те	кучести, МІ	Па		450
	Предел прочности на разрыв, МПа, не				490
	менее				
постоянном токе обратной	Относител	ъное удлин	нение, %, н	е менее	20
полярности.					
•		Ударна	я вязкост	ь KCV	
	Тем	пература		Дж/см	2
	пр	и -30°C		>35	
		дарная вяз	кость KCl		
		пература		Дж/см	2
	прі	и +20°С		127	
		иент наплаг		сход электр	
		г/А*ч	1	кг наплавл	
				металла	, КГ
		9,5		1,6	

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	350°C – 1 час

Информация по упаковке			Режимы сварочного тока			
			(Сварочный ток, А		
Диаметр, мм	Длина, мм	мм Вес пачки, кг	Нижнее	Вертикально	Потолочное	
				снизу-вверх		
2,5	350	1,0; 2,5; 5,0	70-90	60-80	60-80	
3,0	350	1,0; 2,5; 5,0	80-110	60-90	60-90	
4,0	450	1,0; 2,5; 6,0	130-170	100-140	100-140	
5,0	450	1,0; 2,5; 6,0	170-200	140-160	140-160	

УОНИ-13/45

ΓΟCT 9466-75, ΓΟCT 9467-75 ΤУ 1272-002-11040008-2001 <u>Э42A – УОНИ-13/45 – Ø – УД</u> E 412(4) – Б 20

Описание Электроды с основным видом покрытия предназначены для сварки особо ответственных конструкций из низкоуглеродистых и низколегированных сталей, когда к металлу сварных швов предъявляются повышенные требования по пластичности и ударной вязкости.

Рекомендуются для сварки конструкций, работающих в условиях пониженных температур.

Металл шва характеризуется низким содержанием водорода и высокой стойкостью против образования кристаллизационных трещин.

Сварка выполняется короткой дугой по тщательно очищенной от загрязнений поверхности, на постоянном токе обратной полярности.

Классификация и одобренияПРОМТЕХСТАНДАРТ

НАКС (группы технических устройств: ГДО, ГО, КО, МО, НГДО, ОТОГ, ОХНВП, ПТО, СК)

Химический состав наплавленного металла, %						
С	Mn Si S P					
≤0,11	0,4-0,8	≤0,40	≤0,030	≤0,035		
Химический состав наплавленного металла, %						

Механические свойства наплавленного			
металла			
Предел текучести, МПа	410		
Предел прочности на разрыв, МПа, не	412		
менее			
Относительное удлинение, %, не менее	22		

Ударная вязкость KCV				
Температура	Дж/см²			
при -30°C	>35			
Ударная вязкост	ь КСИ, не менее			
Температура	Дж/см²			
при +20°C	147			
Коэффициент наплавки,	Расход электродов на			
г/А*ч	1 кг наплавленного			
	металла, кг			
9,5	1,7			

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	350°C – 1 час

Информация по упаковке			Режи	мы сварочного	тока
			Сварочный ток, А		
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально снизу-вверх	Потолочное
2,5	350	1,0; 2,5; 5,0	50-75	40-65	40-65
3,0	350	1,0; 2,5; 5,2	80-100	70-90	70-90
4,0	450	1,0; 2,5; 6,5	130-150	130-140	130-140
5,0	450	1,0; 2,5; 6,0	170-200	160-180	-
6,0	450	1,0; 2,5; 5,0	210-240	-	-

полярности.

Электроды для сварки углеродистых и низколегированных сталей

УОНИ-13/55

ΓΟCT 9466-75, ΓΟCT 9467-75 ΤУ 1272-002-11040008-2001 <u>Э50A – УОНИ-13/55 – Ø – УД</u> Е 515 – Б 20

Описание		Классифи	кация и од	добрения	
Электроды с основным видом	ПРОМТЕХ	(СТАНДАР	Γ		
покрытия предназначены для сварки особо ответственных конструкций из	НАКС (группы технических устройств: ГДО, ГО, КО, МО, НГДО, ОТОГ, ОХНВП, ПТО, СК, КСМ)				
углеродистых и низколегированных					
сталей, работающих при	Химичес	кий состав	наплавле	енного мет	алла, %
отрицательных температурах и	С	Mn	Si	S	Р
знакопеременных нагрузках.	≤0,11	0,80-1,3	≤0,50	≤0,030	≤0,030
NA	Химический состав наплавленного металла, %				
Металл шва характеризуется низким					
содержанием водорода и высокой					
стойкостью против образования	Механические свойства наплавленного				
кристаллизационных трещин.			металла		
Сварка выполняется короткой дугой	Предел текучести, МПа 460				
по тщательно очищенной от	Предел прочности на разрыв, МПа, не 490				
загрязнений поверхности, на	менее				
постоянном токе обратной	Относите	пьное удлин	нение, %, н	е менее	20

Ударная вязкость KCV				
Температура	Дж/см²			
при -40°С	>50			
•				
Ударная вязкост	ь KCU, не менее			
Температура	Дж/см²			
при +20°C	127			
Коэффициент наплавки,	Расход электродов на			
г/А*ч	1 кг наплавленного			
	металла, кг			
9,5	1,65			

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	370°С – 1 час

Информация по упаковке			Реж	имы сварочного	о тока
		Сварочный ток, А			
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально снизу-вверх	Потолочное
2,5	350	1,0; 2,5; 4,5; 5,0	70-90	60-80	60-80
3,0	350	1,0; 2,5; 4,7; 5,0	80-130	80-120	80-110
4,0	450	1,0; 2,5; 6,0; 6,2	115-190	115-180	115-170
5,0	450	1,0; 2,5; 6,0	170-220	170-210	170-210
6,0	450	1,0; 2,5; 6,2	210-290	-	-

УОНИИ-13/55Р

ГОСТ 9466-75, ГОСТ 9467-75 ТУ 25.93.15-015-11040008-2021 <u>Э50А-УОНИИ-13/55Р- Ø – УД</u> Е 51 5 – Б 20

Описание Электроды с основным видом покрытия предназначены для сварки ответственных конструкций из углеродистых и низколегированных конструкционных сталей с временным сопротивлением разрыву не менее 510 МПа, работающих при отрицательных температурах и знакопеременных нагрузках. Сварка производится на короткой дуге по тщательно очищенным от окалины, ржавчины и других загрязнений поверхностям.

Сварка выполняется на постоянном токе обратной полярности.

панасомфинация и одоорония
НАКС (группы технических устройств: ГО, КО, ПТО, ГДО, НГДО, МО, ОХНВП, ОТОГ, СК)

Кпассификация и олобрения

Химичес	кий состав	наплавле	нного мет	алла, %	
С	Mn	Si	S	Р	
≤0,11	0,8-1,5	0,3-0,7	≤0,030	≤0,030	
Химичес	кий состав	наплавле	нного мет	алла, %	
Mexa	нические с	войства н	аплавлені	ного	
металла					
Предел текучести, МПа				≥400	
Предел прочности на разрыв, МПа				≥510	
Относительное удлинение, %				22	

Ударная вязкость KCV			
Температура Дж/см²			
при -40°С	≥34		
·			
Ударная вязкост	ь KCU, не менее		
Температура Дж/см²			
при +20°C	150		
Коэффициент наплавки,	Расход электродов на		
г/А*ч	1 кг наплавленного		
	металла, кг		
10	1.6		

Ток	=(+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	350°С – 1 час

Информация по упаковке		Режимы сварочного тока			
			(Сварочный ток, л	Ą
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально	Потолочное
			пижнее	снизу-вверх	ПОТОЛОЧНОЕ
2,5	350	1,0; 2,5; 5,0	60-95	60-90	60-85
3,0	350	1,0; 2,5; 5,0	80-130	80-120	80-130
4,0	450	1,0; 2,5; 5,0; 6,0	115-190	115-180	115-190
5,0	450	1,0; 2,5; 5,0; 6,0	170-220	170-210	170-220

УОНИ-13/65

ΓΟCT 9466-75, ΓΟCT 9467-75 ΤУ 1272-002-11040008-2001 <u>Э60 – УОНИ-13/65 – Ø – УД</u> Е 513 – Б 20

Описание	
Электроды с основным видом	Γ
покрытия предназначены для сварки	
ответственных конструкций из	
низкоуглеродистых и	
низколегированных сталей с	
временным сопротивлением разрыву	
до 590 МПа, в том числе и для сварки	
конструкций, работающих в условиях	
пониженных температур.	
	_
OF COLUMN ASSESSMENT TO THE MANAGEMENT OF THE COLUMN ASSESSMENT OF THE	l

Обеспечивают получение металла шва с низким содержанием водорода и высокой стойкостью к образованию кристаллизационных трещин.

Сварка выполняется короткой дугой по тщательно очищенной от загрязнений поверхности, на постоянном токе обратной полярности.

Классификация и одобрения				
ПРОМТЕХ	КСТАНДАР	Γ		
Химичес	кий состав	наплавле	енного мет	алла, %
С	Mn	Si	S	Р
≤0,15	1,3-1,7	≤0,70	≤0,030	≤0,035
Химический состав наплавленного металла, %				
Механические свойства наплавленного				
		металла		
Предел текучести, МПа 480			480	
Предел прочности на разрыв, МПа, не		590		
менее				
Относительное удлинение, %, не менее 18			18	

Ударная вязкость KCV		
Температура	Дж/см ²	
при -20°С	>35	
Ударная вязкост	ь КСП не менее	
Температура	Дж/см²	
при +20°C	98	
Коэффициент наплавки,	Расход электродов на	
г/А*ч	1 кг наплавленного	
	металла, кг	
9,5	1,6	

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	350°C – 1 час

Информация по упаковке		Режимы сварочного тока		о тока	
			(Сварочный ток, л	A
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально	Потолочное
				снизу-вверх	
2,5	350	1,0; 2,5; 5,0	70-90	60-80	60-80
3,0	350	1,0; 2,5; 4,5	80-110	70-90	70-90
4,0	450	1,0; 2,5; 6,0	130-160	120-140	120-130
5,0	450	1,0; 2,5; 6,0	160-210	150-170	-

МПа.

Электроды для сварки углеродистых и низколегированных сталей

УОНИ-13/85

FOCT 9466-75, FOCT 9467-75

<u> Э85 – УОНИ-13/85 – Ø – ЛД</u> E – 12Г2СМ – 0 – Б 20

12

Описание	Классификация и одобрения
Электроды с основным видом	
покрытия предназначены для сварки	
ответственных конструкций из	
легированных сталей повышенной и	
высокой прочности с временным	

Металл шва характеризуется низким содержанием водорода и высокой стойкостью против образования кристаллизационных трещин.

сопротивлением разрыву 690-980

Сварка выполняется короткой дугой по тщательно очищенной от загрязнений поверхности, на постоянном токе обратной полярности.

Химический состав наплавленного металла, %				
С	Mn	Si	Мо	S
≤0,17	1,1-1,8	0,6-0,9	0,8-1,2	≤0,030
Химичес	кий состав	наплавле	нного мет	алла, %
Р				
≤0,035				
Механические свойства наплавленного				
		металла		
Предел текучести, МПа 640			640	
Предел прочности на разрыв, МПа, не			833	
менее				

Относительное удлинение, %, не менее

Ударная вязкость KCV		
Температура	Дж/см²	
при -20°С	не регламентирована	
·		
Ударная вязкост	ь KCU, не менее	
Температура	Дж/см ²	
при +20°C	49	
Коэффициент наплавки,	Расход электродов на	
г/А*ч	1 кг наплавленного	
	металла, кг	
9,5	1,6	

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	350°C – 1 час

Информация по упаковке			Режи	мы сварочного	тока
			(Сварочный ток, л	Ą
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально	Потолочное
				снизу-вверх	
3,0	350	1,0; 2,5; 5,0	90-120	80-100	80-100
4,0	450	1,0; 2,5; 6,0	140-170	130-150	130-150
5,0	450	1,0; 2,5; 6,0	180-220	150-180	-

ЦУ-5

ΓΟCT 9466-75, ΓΟCT 9467-75 ΤУ 1272-002-11040008-2001 <u>Э50A – ЦУ-5 – Ø – УД</u> Е 513 – Б 20

Описание
Электроды с основным видом
покрытия предназначены для сварки
элементов поверхностей нагрева
котлоагрегатов, а также корневых
швов стыков толстостенных
трубопроводов из углеродистых и
низколегированных сталей.
Максимальная температура
эксплуатации сварных соединений
400°C.

Обеспечивают качественную сварку корневых швов трубопроводов.

Сварка выполняется короткой дугой по тщательно очищенной от загрязнений поверхности без предварительного подогрева и последующей термообработки, на постоянном токе обратной полярности.

Классификация и одобрения
ПРОМТЕХСТАНДАРТ

Химический состав наплавленного металла, %				
С	Mn	Si	S	Р
≤0,11	0,8-1,4	≤0,70	≤0,030	≤0,035
Химический состав наплавленного металла, %				

Механические свойства наплавленного металла		
Предел текучести, МПа	450	
Предел прочности на разрыв, МПа, не 490 менее		
Относительное удлинение, %, не менее	20	

Ударная вязкость KCV				
Температура	Дж/см²			
при -20°C	>35			
Ударная вязкост	ь KCU, не менее			
Температура	Дж/см²			
при +20°C	127			
Коэффициент наплавки,	Расход электродов на			
г/А*ч	1 кг наплавленного			
	металла, кг			
9.5	1.7			

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	350°C – 1 час

Информация по упаковке			Режи	мы сварочного	тока
			(Сварочный ток, л	A
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально снизу-вверх	Потолочное
2,5	350	1,0; 2,5; 5,0	75-90	70-85	65-85
3,0	350	1,0; 2,5; 5,0	80-110	-	-

Проволока для сварки углеродистых и низколегированных сталей

ER70S-6 O

AWS A5.18: ER70S-6

EN ISO 14341: G 42 2 C/M G3Sil

Описание Омедненная сварочная проволока сплошного сечения марки GOODEL ER70S-6 предназначена для автоматической и полуавтоматической сварки в защитных газах (тип С1, М21 по EN ISO 14175) углеродистых и низколегированных конструкционных сталей с пределом прочности до 420 МПа. Эта проволока достаточно универсальна и имеет широкую сферу применения. Отличается хорошими показателями качества сварного соединения.

Омедненная проволока GOODEL ER70S-6 применяется: для сварки конструкционной и судостроительной стали; сварки деталей машин в атмосфере углекислого газа (CO2); для работы с тонким листовым металлом; для торцевой сварки, углового сочленения и сварки внахлест; для защиты от коррозии.

Способы сварки (наплавки): ААДП, ААДПН, АПГ, АПГН, МАДП, МАДПН, МП, МПН.

панасопфикации и одоорении
НАКС (группы технических устройств: ГДО, ГО, КО,
МО, НГДО, ОТОГ, ОХНВП, ПТО, СК)

Кпассификация и олобрения

Химический состав проволоки, % Mn Si Cu 0,06-0,14 1,40-1,65 0,8-1,0 ≤0,5 ≤0,15 Химический состав проволоки, % Mo S ≤0,15 ≤0,15 ≤0,03 ≤0,015 ≤0,025

Механические свойства наплавленного металла (средние значения)		
Предел текучести, МПа	450	
Предел прочности на разрыв, МПа	565	
Относительное удлинение, %	27	

Ударная вязкость KCV			
Температура	Дж/см²		
при -30°C	125		
Ударная вязкость KCU			
Ударная вя:	вкость KCU		
Ударная вя: Температура	ВКОСТЬ КСU Дж/см ²		
• • • • • • • • • • • • • • • • • • • •			
• • • • • • • • • • • • • • • • • • • •			

Ток	= (+)
Пространственные положения	H1(PA), H2(PB), Γ(PC), B1(PF), B2(PG), Π1(PE), Π2(PD), H45(H-LO45)

Информация по упаковке			Режимы сварочного тока		
Диаметр, мм	Катушка	Вес, кг	Сварочный ток, А	Напряжение, V	
0,8	D-200	5	50-100	21-24	
0,8	D-270	15	50-100	21-24	
1,0	D-200	5	110-160	22-25	
1,0	D-270	15	110-160	22-25	
1,2	D-200	5	120-230	24-27	
1,2	D-270	15	120-230	24-27	
1,2	K-300-52	15	120-230	24-27	
1,6	D-270	15	190-320	26-30	

Проволока для сварки углеродистых и низколегированных сталей

ER70S-6 Π

AWS A5.18: ER70S-6

EN ISO 14341: G 42 2 C/M G3Sil

Описание	Классификация и одобрения					
Универсальная полированная	НАКС (группы технических устройств: ГДО, Г			, ГО, КО,		
сварочная проволока сплошного	мо, нгдо), ΟΤΟΓ, ΟΧ	(НВП, ПТО	, CK)		
сечения марки GOODEL ER70S-6 –				•		
поверхность с улучшенными						
характеристиками, предназначенная						
для сварки изделий из						
конструкционных нелегированных и	Химичес	кий состав	наплавле	енного мет	алла, %	
низколегированных сталей с	С	Mn	Si	Cu	Cr	
пределом текучести до 420 МПа.	0,06-0,14	1,40-1,65	0,8-1,0	≤0,5	≤0,15	
D	Химичес	кий состав		нного мет	алла, %	
Высокая чистота поверхности и	Ni	Мо	V	S	P	
стабильный диаметр по всей длине в	≤0,15	≤0,15	≤0,03	≤0,015	≤0,025	
сочетании с низким содержанием вредных примесей, таких как S и P,		•		•		
вредных примесей, таких как э и Р, обеспечивают стабильное горение	Механические свойства наплавленного					
проволоки с минимальным	металла (средние значения)					
разбрызгиванием и высокое качество	Предел текучести, МПа 450			450		
наплавленного металла.	Предел прочности на разрыв, МПа 565					
That Blad Blot Hotel Motar Bla.	Относительное удлинение, % 27					
Отсутствие омеднения позволяет					•	
избежать засорения	Ударная вязкость KCV					
проволокопровода и пригорания	Тем	пература		Дж/см²		
чешуек меди к рабочей поверхности	пр	и -30°C		125		
контактного наконечника, что						
значительно увеличивает срок						
службы расходных деталей горелки.	Ударная вязкость КС U					
	Температура Дж/см²			2		
Проволока нашла широкое						
применение в судостроении, сварке						
металлоконструкций,						
машиностроении и многих других						
отраслях промышленности.						

Ток	= (+)
Пространственные положения	Н1(PA), H2(PB), Г(PC), B1(PF), B2(PG), П1(PE), П2(PD), H45(H-LO45)

	Информация по упаковке			Режимы сваро	чного тока
Диаметр, мм Катушка Вес пачки, кг		Сварочный ток, А	Напряжение, V		
	1,2	D-270	15	120-230	24-27

Электроды для сварки высоколегированных сталей

АНЖР-1

ГОСТ 9466-75, ГОСТ 10052-75 ТУ 1273-004-11040008-2016 <u>Э-08X25H60M10Г2 – АНЖР-1 – Ø – ВД</u> E – 001 – Б 20

Сварка выполняется короткой дугой по очищенной от загрязнений поверхности, на постоянном токе обратной полярности.

Химический состав наплавленного металла, %						
С	Mn	Si	Nі (основа)	Cr		
≤0,10	1,5-2,5	≤0,35	57-61,5	23-26		
Химический состав наплавленного металла, %						
Мо	Ti	S	Р			
8,5-11,0	≤0,05	≤0,015	≤0,020			

Классификация и одобрения

Механические свойства наплавленного				
металла				
Предел текучести, МПа	470			
Предел прочности на разрыв, МПа, не менее	610			
Относительное удлинение, %, не менее	25			

Ударная вязкость KCV					
Температура	Дж/см ²				
Ударная вязкост	ь KCU, не менее				
Температура	Дж/см ²				
при +20°C	120				
Коэффициент наплавки,	Расход электродов на				
г/А*ч	1 кг наплавленного				
	металла, кг				
15	1,5				

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	300°C – 1 час

Информация по упаковке			Режимы сварочного тока		
	иетр, мм Длина, мм Вес пачі		Сварочный ток, А		
Диаметр, мм		Вес пачки, кг	Нижнее	Вертикально снизу-вверх	Потолочное
3,0	350	1,0; 2,5; 5,0	85-95	70-90	70-90
4,0	350	1,0; 2,5; 5,0	110-125	100-120	100-120
5,0	350	1,0; 2,5; 5,0	130-145	120-135	-

Электроды для сварки высоколегированных сталей

АНЖР-2

ΓΟCT 9466-75, ΓΟCT 10052-75 ΤУ 1273-004-11040008-2016 <u>Э-06X25H40M7Г2 – АНЖР-2 – Ø – ВД</u> E – 001 – Б 20

Описание
Электроды с основным видом
покрытия предназначены для сварки
разнородных сталей
(высоколегированных жаропрочных с
низколегированными и
легированными теплоустойчивыми), а
также закаливающихся сталей без
последующей термообработки и без
предварительного подогрева при
изготовлении и ремонте
ответственных конструкций,
работающих при температуре 450-
550°C.

Сварка выполняется короткой дугой по очищенной от загрязнений поверхности, на постоянном токе обратной полярности.

Химический состав наплавленного металла, %						
С	Mn	Si	Ni	Cr		
≤0,08	1,5-2,5	≤0,50	38-41	23-26		
Химический состав наплавленного металла, %						
Мо	Ti	S	Р			
6,2-8,5	≤0,05	≤0,015	≤0,025			

Классификация и одобрения

Механические свойства наплавленного					
металла					
Предел текучести, МПа	440				
Предел прочности на разрыв, МПа, не	590				
менее					
Относительное удлинение, %, не менее	35				

Ударная вязкость KCV				
Температура	Дж/см ²			
•				
Ударная вязкость KCU, не менее				
Температура	Дж/см²			
при +20°C	120			
Коэффициент наплавки,	Расход электродов на			
г/А*ч	1 кг наплавленного			
	металла, кг			
14,5	1,4			

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	300°С – 1 час

Информация по упаковке		Режимы сварочного тока			
Диаметр, мм	Длина, мм Вес пачки, кг		(Сварочный ток, л	Ą
		Вес пачки, кг	Нижнее	Вертикально	Потолочное
		пижнее	снизу-вверх	Потолочное	
3,0	350	1,0; 2,5; 5,0	85-95	70-90	70-90
4,0	350	1,0; 2,5; 5,0	110-125	100-120	100-120
5,0	350	1,0; 2,5; 5,0	140-160	120-140	-

НЖ-13

ΓΟCT 9466-75, ΓΟCT 10052-75 ΤУ 1273-004-11040008-2016 $\frac{\text{Э-09X19H10Г2M2Б} - \text{HЖ-13} - \emptyset - \text{ВД}}{\text{E} - 2005 - \text{Б} \, 30}$

Описание		Классифи	кация и од	добрения		
Электроды с основным видом						
покрытия предназначены для сварки						
ответственного оборудования из						
коррозионностойких						
хромоникелемолибденовых сталей	Химичес	кий состав	наплавл	енного мет	алла, %	
марок 10Х17Н132Т, 10Х17Н13М3Т,	С	Mn	Si	Ni	Cr	
08X21H6M2T и им подобных,	≤0,12	1,0-2,5	≤1,20	8,5-12,0	17-20	
работающего при температуре до	Химичес	кий состав	наплавле	енного мет	алла, %	
350℃, когда к металлу шва	Nb	Мо	S	Р		
предъявляют требования стойкости к	0,7-1,3	1,8-3,0	≤0,020	≤0,030		
межкристаллитной коррозии.	Механические свойства наплавленного					
Обеспечивают получение металла шва, стойкого к межкристаллитной коррозии.	металла					
	Предел текучести, МПа 47			470		
	Предел прочности на разрыв, МПа, не			590		
	менее					
Сварка выполняется короткой дугой	Относительное удлинение, %, не менее 22			22		
по очищенной от загрязнений						
поверхности, на постоянном токе	Ударная вязкость KCV					
обратной полярности.	Тем	пература		Дж/см	2	
Содержание ферритной фазы в						
наплавленном металле: 2-10%.						
	У,	дарная вяз	кость KCI	Ј, не менес	9	
			Дж/см	2		
		и +20°C		70		
	Коэффиц	иент наплаг	вки, Ра	сход электр	одов на	
		г/А*ч		кг наплавл	енного	
				металла	, кг	
	_	10		1,8		

Ток	= (+)
Пространственные положения	1, 2, 3, 4
Режим прокалки	300°C – 1 часа

Информация по упаковке		Режи	Режимы сварочного тока		
			(Сварочный ток, л	A
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально снизу-вверх	Потолочное
3,0	350	1,0; 2,5; 5,0	70-90	60-80	60-70
4,0	450	1,0; 2,5; 7,0	120-140	110-130	-
5,0	450	1,0; 2,5; 6,5	160-180	120-140	-

	ОСТ 9466-75, ГС ТУ 1273-004-110		<u>9-11X15H25</u>	<u>БМ6АГ2 – НИА</u> E – 000 – Б 20	<u>T-5 – Ø – ВД</u>)
Описание		Классифи	кация и од	добрения	
Электроды с основным видом покрытия предназначены для сварки ответственных конструкций из сталей марок 30ХГСА, 30ХГСНА, а также из					
других низколегированных и	Химичес	кий состав	наплавле	енного мет	галла, %
легированных сталей в закаленном	С	Mn	Si	Ni	Cr
состоянии без последующей	0,08-0,14	1,0-2,3	≤0,70	23-27	13,5-17,0
термообработки, а также аустенитных сталей и их сочетаний с	Химичес	кий состав			алла, %
низколегированными и	Mo	N	S	Р	
легированными сталями.	4,5-7,0	≤0,20	≤0,020	≤0,030	
. Сварка выполняется короткой дугой по очищенной от загрязнений поверхности, на постоянном токе	Механические свойства наплавленного металла				
	Предел текучести, МПа 430				430
	Предел прочности на разрыв, МПа, не 590 менее				590
обратной полярности.	Относител	тьное удлин	нение, %, н	е менее	30
	Ударная вязкость KCV				
	Тем	пература		Дж/см	2
	Ударная вязкость KCU, не менее				
	У.	царпая вяз	Температура Дж/см²		
		•		Дж/см	2
	Тем	•		Дж/см 100	
	Тем	пература			

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	300°С – 1 час

12,5

металла, кг 1,6

Инф	Информация по упаковке			рочного тока
			Сварочн	ый ток, А
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально снизу-
			Пижнее	вверх
3,0	350	1,0; 2,5; 5,0	60-100	40-80
4,0	350	1,0; 2,5; 5,0	100-140	80-120
5,0	350	1,0; 2,5; 5,5	130-170	-

НИИ-48Г

очищенной от загрязнений поверхности, на постоянном токе

обратной полярности.

ΓΟCT 9466-75, ΓΟCT 10052-75 ΤУ 1273-004-11040008-2016 $\frac{\text{Э-10X20H9Г6C} - \text{HИИ-48\Gamma} - \varnothing - \text{ВД}}{\text{E} - \text{0050} - \text{Б} \text{ 20}}$

Описание	Классификация и одобрения				
Электроды с основным видом					
покрытия предназначены для сварки					
конструкций из низколегированных					
специальных сталей и сварки					
высокомарганцовистой стали типа	Химичес	кий состав	наплавле	нного мет	алла, %
110Г13-Л; пригодны для сварки	С	Mn	Si	Ni	Cr
разнородных сталей	≤0,13	4,8-7,0	0,5-1,2	-,-	18,5-21,5
(конструкционных углеродистых и низколегированных с высокохромистыми 08Х13, 12Х17 и аустенитными 12Х18Н9Т, 10Х18Н10 и	Химический состав наплавленного металла, %				
	S	Р			
	≤0,02	≤0,04			
,	Механические свойства наплавленного				
др.).	металла				
Металл шва жаростоек до	Предел текучести, МПа 380				
температуры 800°С.	Предел прочности на разрыв, МПа 600				
	Относительное удлинение, % 42				42
Сварку производят короткой дугой по					
erapin, inperiored. Heberiner Historica	1			1/01/	

Ударная вязкость KCV				
Температура	Дж/см ²			
Ударная вязкость KCU				
Температура	Дж/см ²			
при +20°С	140			
Коэффициент наплавки,	Расход электродов на			
г/А*ч	1 кг наплавленного			
	металла, кг			
11.5	1.6			

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	300°C – 1 час

Информация по упаковке		Режи	имы сварочного тока		
				Сварочный ток, л	Ą
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально	Потолочное
		Пижнее	снизу-вверх	ПОТОПОННОЕ	
3,0	350	1,0; 2,5; 5,0	100-130	90-120	90-120
4,0	450	1,0; 2,5; 6,0	140-180	130-160	130-160
5,0	450	1,0; 2,5; 6,5	190-200	170-180	170-180

03.	Л-(ô
-----	-----	---

ΓΟCT 9466-75, ΓΟCT 10052-75 ΤУ 1273-004-11040008-2016

НГДО, ОХНВП)

<u>Э-10X25H13Г2 – ОЗЛ-6 – Ø – ВД</u> E – 2975 – Б 20

Описание

Электроды с основным видом покрытия предназначены для сварки ответственного оборудования из литья и проката жаростойких сталей марок 20X23H13, 20X23H18 и им подобных, работающего в окислительных средах при температуре до 1000°С. Возможна сварка хромистой стали марки 15X25T и ей подобных, стали марки 25X25H20C2, а также сварка углеродистых и низколегированных сталей с высоколегированными сталями аустенитного класса.

Металл шва характеризуется высокой жаростойкостью, а также стойкостью против межкристаллитной коррозии.

Сварку производят короткой дугой по очищенной от загрязнений поверхности, на постоянном токе обратной полярности.

Содержание ферритной фазы в наплавленном метапле: 2-10%.

Классификация и одобрения НАКС (группы технических устройств: ГО, КО,

 Химический состав наплавленного металла, %

 С
 Mn
 Si
 Ni
 Cr

 ≤0,12
 1,0-2,5
 ≤1,0
 11,5-14,0
 22,5-27,0

 ≤0,12
 1,0-2,5
 ≤1,0
 11,5-14,0
 22,5-27,0

 Химический состав наплавленного металла, %

 S
 P

 ≤0,020
 ≤0,030

Механические свойства наплавленного металла Предел текучести, МПа 410 Предел прочности на разрыв, МПа, не менее 540 Относительное удлинение, %, не менее 25

Ударная вязкость KCV				
Температура	Дж/см ²			
Ударная вязкост	ь KCU, не менее			
Температура	Дж/см²			
при +20°C	90			
Коэффициент наплавки,	Расход электродов на			
г/А*ч	1 кг наплавленного			
	металла, кг			
11.5	1.65			

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	300°C – 1 час

Информация по упаковке		Режимы сварочного тока				
			(Сварочный ток, л	Ą	
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально	Потолочное	
			пижнее	снизу-вверх	ПОТОЛОЧНОЕ	
2,5	350	1,0; 2,5; 4,7	55-65	50-60	50-60	
3,0	350	1,0; 2,5; 5,0	60-80	50-70	50-70	
4,0	450	1,0; 2,5; 6,5	120-140	100-120	90-110	
5,0	450	1,0; 2,5; 6,5	140-160	120-140	-	

03Л-7

ΓΟCT 9466-75, ΓΟCT 10052-75 ΤУ 1273-004-11040008-2016 $\frac{\text{Э-08X20H9Г2Б} - \text{ОЗЛ-7} - \textit{Ø} - \text{ВД}}{\text{E} - 2005 - \text{Б} \text{ 20}}$

Описание		Классифи	кация и од	обрения	
Электроды с основным видом					
покрытия предназначены для сварки					
конструкций из коррозионностойких					
сталей марок 08Х18Н10, 08Х18Н10Т,					
08Х18Н12Б и им подобных,	Химичес	кий состав	наплавле	енного мет	алла, %
работающих в агрессивных средах,	С	Mn	Si	Ni	Cr
когда к металлу шва предъявляются	0,05-0,12	1,0-2,5	≤1,3	8,0-10,5	18-22
жёсткие требования по стойкости	Химичес	кий состав	наплавле	енного мет	алла, %
против межкристаллитной коррозии.	Nb	S	Р		
Motore upo vonovtonyovotog puloovoŭ	0,7-1,3	≤0,020	≤0,030		
Металл шва характеризуется высокой стойкостью против межкристаллитной	Mexa	нические с	войства н	аплавлені	ЮГО
коррозии.			металла		
коррозии.	Предел те	кучести, МГ	٦а		430
Сварку производят короткой дугой по	Предел прочности на разрыв, МПа, не 5			540	
очищенной от загрязнений	менее				
поверхности, на постоянном токе	Относительное удлинение, %, не менее			22	
обратной полярности.					
·			я вязкост		
Содержание ферритной фазы в	Тем	пература		Дж/см²	2
наплавленном металле: 2-10%.					
		дарная вяз	кость KCl	Ј, не менес)
		пература		Дж/см ²	2
	пр	и +20°C		80	
		иент наплав		сход электр	
	г/А*ч 1 кг наплавленног		енного		
				металла	, кг
		11,5		1,6	

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	300°C – 1 час

Информация по упаковке		Режимы сварочного тока			
				Сварочный ток, л	Ą
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикально	Потолочное
				снизу-вверх	
3,0	350	1,0; 2,5; 5,0	60-80	50-70	50-70
4,0	450	1,0; 2,5; 6,5	110-130	90-120	90-110
5,0	450	1,0; 2,5; 6,5	140-160	120-140	-

03Л-8

ΓΟCT 9466-75, ΓΟCT 10052-75 ΤУ 1273-004-11040008-2016 <u>Э-07Х20Н9 – ОЗЛ-8 – Ø – ВД</u> E – 2004 – Б 20

Описание		Классификация и одобрения			
Электроды с основным видом покрытия предназначены для сварки	НАКС (группы технических устройств: ГО, КО, НГДО, ОХНВП)				KO,
ответственных изделий из коррозионностойких хромоникелевых					
сталей марок 08Х18Н10, 12Х18Н9,	V	<u>.</u>			0/
12Х18Н10Т и им подобных, когда к	С	кий состав Мп	Si	Ni	Cr
металлу шва не предъявляются	≤0.09	1,0-2,0	0,3-1,2		18,0-21,5
требования по стойкости к	-,	кий состав			
межкристаллитной коррозии.	S	P			
OF COTOUR DOLLAR TO THE COURSE LINE	≤0,020	≤0,030			
Обеспечивают получение шва, стойкого к межкристаллитной	Mexa	нические с	войства н металла	аплавлен	ного
коррозии.	Предел те	кучести, М	٦α		420
Сварку производят короткой дугой по очищенной от загрязнений	Предел прочности на разрыв, МПа, не менее			540	
поверхности, на постоянном токе	Относительное удлинение, %, не менее			30	
обратной полярности.					
			я вязкост		2
Содержание ферритной фазы в наплавленном металле: 2-8%.	Температура Дж/см²				
	У	дарная вяз	кость KCl	Ј, не мене	е
		пература		Дж/см	2
	пр	и +20°C		100	
		иент наплав г/А*ч		сход элект _і кг наплавл	
		1// 1	'	металла	
		13		1,6	

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	300°C – 1 час

Информация по упаковке		Режимы сварочного тока				
				Сварочный ток, А	١	
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикальное	Потолочное	
			ТИЖПСС	снизу-вверх	Потолочное	
2,5	350	1,0; 2,5; 5,0	40-60	40-50	40-50	
3,0	350	1,0; 2,5; 5,2	50-70	50-60	50-60	
4,0	450	1,0; 2,5; 6,5	110-130	100-120	100-120	
5,0	450	1,0; 2,5; 6,5	150-170	120-150	-	

ОЗЛ-17У

ΓΟCT 9466-75, ΓΟCT 10052-75 ΤУ 1273-004-11040008-2016 $\frac{\text{Э-03X23H27M3Д3Г2Б} - \text{О3Л-17У} - \emptyset - \text{ВД}}{\text{E} - 400 - \text{БР 20}}$

1,7

	_	16 1				
Описание		Классифи	кация и од	добрения		
Электроды с рутилово-основным						
видом покрытия предназначены для						
сварки ответственного оборудования						
из коррозионностойких сплавов на						
железоникелевой основе марок						
06ХН28МДТ, 03ХН28МДТ и стали	Химичес	кий состав	наплавл	енного мет	алла, %	
марки 03Х21Н21М4ГБ	С	Mn	Si	Ni	Cr	
преимущественно толщиной до 12	≤0,04	1,5-2,5	≤0,7	25-29	21-25	
мм, работающих в средах серной и	Химичес	кий состав	наплавл	енного мет	алла, %	
фосфорной кислот с примесями	Мо	Nb	Cu	S	P	
фтористых соединений.	2,6-4,3	0,4-0,5	2,5-3,5	≤0,020	≤0,035	
Металл шва характеризуется высокой		•	•	•		
коррозионной стойкостью и	Mexa	нические с	войства н	аплавлен	ного	
стойкостью к межкристаллитной	металла					
коррозии.	Предел те	екучести, МІ	Па		380	
корросии.	Предел п	очности на	разрыв, Л	ИПа, не	540	
Сварку металла толщиной до 12 мм	менее					
рекомендуется проводить валиком во	Относител	пьное удлин	нение, %, н	не менее	26	
всю ширину разделки, сварку						
металла больших толщин – с		Ударна	я вязкост	ь KCV		
двухсторонней разделкой кромок.	Тем	пература		Дж/см	CM ²	
При сварке особо ответственных						
конструкций необходимо удаление						
кратеров шлифованием.	У	дарная вяз	кость КС	Ј, не мене	е	
	Тем	пература		Дж/см	2	
Сварка выполняется короткой дугой	при +20°С			110		
по очищенной от загрязнений	- 17					
поверхности, на постоянном токе						
обратной полярности.	Коэффиц	иент напла	вки Ра	сход электр	оолов на	
		г/А*ч		кг наплавл		
				металла		
					,	

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	300°С – 1 час

Информация по упаковке			Режимы сварочного тока		
				Сварочный ток, А	\
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикальное снизу-вверх	Потолочное
3,0	350	1,0; 2,5; 5,5	110-130	65-85	70-90
4,0	350	1,0; 2,5; 5,0	130-160	90-120	100-130

ПОПУЛЯРНЫЕ МАРКИ

СВАРОЧНЫХ ЭЛЕКТРОДОВ

GOODEL MP-3

Электроды с рутилово-целлюлозным покрытием предназначены для ручной дуговой сварки ответственных конструкций из углеродистых и низколегированных сталей, когда к получаемым швам предъявляются повышенные требования.

GOODEL-OK46 GOLD

Электроды предназначены для сварки рядовых и ответственных конструкций из углеродистых и низколегированных сталей с временным сопротивлением разрыву не менее 451 МПа. Одним из основных достоинств является возможность сварки на низких токах: для Ø2,5 мм — от 40 A, для Ø3,0 мм — от 40 A, для Ø4,0 мм — от 90 A.

AH0-21

Электроды с покрытием рутилово-целлюлозного типа идеально подходят для работы с углеродистыми сталями по ГОСТ 380 и ГОСТ 1050. АНО-21 рекомендуются для соединения труб малого и среднего диаметра, а также для сварки металлоконструкций, где требуется высокая прочность швов в различных пространственных положениях.

УОНИ-13/55

Электроды УОНИ-13/55 с основным покрытием предназначены для ручной электродуговой сварки особо ответственных конструкций из низкоуглеродистых, среднеуглеродистых и низколегированных сталей, работающих при знакопеременных нагрузках и отрицательных температурах до -50 °С. Стержень электрода – проволока марки Св-08А ГОСТ 2246-70.

Применяются для конструкций и трубопроводов, требующих повышенных характеристик по пластичности и ударной вязкости сварного шва. Широко используются в мостостроении. Обеспечивают отличную защиту сварочной ванны, что важно при проведении работ на открытом пространстве. Обладают стабильными техническими характеристиками. Зарекомендовали себя при работе в условиях севера.

Механические свойства наплавленного металла (средние значения)

Предел прочности на разрыв, МПа	Ударная вязкость, Дж/см2	Тип образца по ГОСТ 6996	Температура испытаний
580	240	кси	+20°C
	>50	KCV	-40°C

Химический состав наплавленного металла, массовая доля, %

С	Mn	Si	S	Р
0,08-0,10	0,90-1,20	0,30-0,45	0,01-0,02	0,02-0,025

WWW.GOODEL.RU

ПОПУЛЯРНЫЕ МАРКИ

СВАРОЧНЫХ ЭЛЕКТРОДОВ

GOODEL OK46

Электроды с рутилово-целлюлозным покрытием типа 346 предназначены для работы с низкоуглеродистыми и углеродистыми сталями. Эти электроды надежно справляются со сложными сварочными задачами при монтаже и ремонте ответственных конструкций, включая газопроводы и водопроводные трубы.

MP-3 CONSTRUCTION

МР-3 — электроды с рутиловым покрытием, предназначенные для сварки ответственных конструкций из низкоуглеродистых сталей с временным сопротивлением разрыву до 490 МПа. Они идеально подходят для случаев, когда к получаемым швам не предъявляются повышенные требования.

GOODEL-52U

Электроды GOODEL-52U (аналог LB-52U) с основным покрытием предназначены для сварки корневого шва поворотных и неповоротных стыков трубопроводов класса прочности до K60 включительно, с временным сопротивлением разрыву до 510 МПа, работающих при отрицательных температурах до -50 °C.

ОЗЛ-25Б

ΓΟCT 9466-75, ΓΟCT 10052-75 ΤУ 1273-004-11040008-2016 $\frac{\text{Э-10X20H70Г2M2Б2B} - \text{О3Л-25Б} - \varnothing - \text{ВД}}{\text{E} - \text{087} - \text{Б} \text{ 20}}$

1,4

Описание		Классифи	кания и о	лобрения		
Электроды с основным видом		шиоопфи	пации и	доорония		
покрытия предназначены для сварки						
конструкций из коррозионностойких						
жаростойких сплавов типа ХН78Т,						
применяются также для сварки						
разнородных сталей и сплавов и для	V				0/	
восстановления изношенных рабочих		кий состав				
поверхностей деталей наплавкой.	C	Mn	Si	Ni	Cr	
поворжностой доталой наплавкой.	≤0,14	1,2-2,5	≤1,0	основа	18-22	
Металл шва характеризуется высокой		кий состав				
жаростойкостью до температуры не	Mo	Nb	W	S	Р	
более 1000°С.	1,2-2,7	1,5-3,0	0,1-0,3	≤0,015	≤0,020	
333.53 1333 3.						
Сварка выполняется короткой дугой	Механические свойства наплавленного					
по очищенной от загрязнений	металла					
поверхности, на постоянном токе	Tip - Harris and Transfer and T				390	
обратной полярности.					590	
·	менее					
	Относите	пьное удлин	нение, %, і	не менее	30	
			я вязкост			
	Тем	пература		Дж/см	2	
	У	дарная вяз	кость КС	U, не мене	е	
	Тем	пература		Дж/см ²		
	при +20°C		100			
	Коэффиц	иент наплаі	вки, Ра	сход элект	оодов на	
		г/А*ч	- 1	кг наплавл		
				металла	ı, KГ	

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	300°C – 1 час

9,5

Информация по упаковке			Реж	имы сварочного	тока
				Сварочный ток, А	\
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикальное	Потолочное
			Пижнее	снизу-вверх	Потолючное
3,0	350	1,0; 2,5; 5,0	60-80	60-706	60-70

УОНИ-13/НЖ 12X13

ГОСТ 9466-75, ГОСТ 10052-75 ТУ 1273-004-11040008-2016 <u> Э-12X13 – УОНИ-13/НЖ/12X13 – Ø – ВД</u> E – 000 – Б 20

Описание		Классифи	кация и о	добрения	
Электроды с основным видом					
покрытия предназначены для сварки					
ответственных конструкций из					
хромистых сталей типа 08Х13, 12Х13					
и наплавки уплотнительных	Химичес	кий состав	наплавл	енного мет	галла, %
поверхностей стальной арматуры.	С	Mn	Si	Ni	Cr
	0,08-0,16	0,5-1,5	0,3-1,0	≤0,6	11-14
Сварку хромистых сталей производят	Химичес	кий состав	наплавл	енного мет	галла, %
с предварительным подогревом до	S	Р			
температуры 200-250°С.	≤0,030	≤0,035			
Chanka na Bastagunan taka afaatnan	Mexa	нические с	войства	наплавлен	ного
Сварка на постоянном токе обратной	металла				
полярности.	Предел текучести, МПа				420
	Предел прочности на разрыв, МПа, не			590	
	менее				
	Относительное удлинение, %, не менее 16			16	
		Ударна	я вязкост	ъ КСУ	
	Тем	пература		Дж/см	2
	y,	дарная вязкость KCU, не менее			
	Тем	пература		Дж/см²	
	пр	и +20°C		50	
				•	•
	Коэффиц	иент напла	вки, Ра	сход элект	родов на
		г/А*ч	1	кг наплавл	енного
				металла	1, КГ
	1	11		1,7	

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	350°С – 1 час

Информация по упаковке		Режимы сварочного тока			
			Сварочный ток, А		
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикальное снизу-вверх	Потолочное
3,0	350	1,0; 2,5; 5,5	80-100	60-90	60-90
4,0	450	1,0; 2,5; 5,0	110-140	100-110	100-110
5,0	450	1,0; 2,5; 5,0	140-170	110-130	-

ЦЛ-9

ΓΟCT 9466-75, ΓΟCT 10052-75 TY 1273-004-11040008-2016

<u> Э-10Х25Н13Г2Б – ЦЛ-9 – Ø – ВД</u> E – 2005 – Б 20

Описание		Классифи	кация и од	добрения		
Электроды с основным видом						
покрытия предназначены для сварки						
ответственных конструкций из						
двухслойных сталей со стороны						
легированного слоя из	Химичес	кий состав	наплавле	енного мет	галла, %	
коррозионностойких сталей марок	С	Mn	Si	Ni	Cr	
12Х18Н10Т, 12Х18Н9Т, 08Х13 и им	≤0,12	1,2-2,5	0,4-1,2	11,5-14,0	21,5-26,5	
подобных, работающих в	Химичес	кий состав	наплавле			
агрессивных средах, когда к металлу	Nb	S	Р			
шва предъявляются требования по	0,7-1,3	≤0,020	≤0,030			
стойкости к межкристаллической	Mexa	нические с	войства н	аплавлен	ного	
коррозии.			металла			
Обеспечивают получение металла	Предел текучести, МПа 43				430	
шва, стойкого к межкристаллитной коррозии.	Предел прочности на разры			ИПа, не	590	
	менее					
поррасти.	Относительное удлинение, %, не менее 25				25	
Сварку производят короткой дугой по						
очищенной от загрязнений	Ударная вязкость KCV					
поверхности, на постоянном токе	Температура			Дж/см²		
обратной полярности.						
	У,	дарная вяз	кость KCl	Ј, не мене	е	
	Температура			Дж/см ²		
	при +20°C			70		
		иент наплаі	вки, Ра	сход элект	оодов на	
		г/А*ч	1	кг наплавл	енного	
				металла	і, КГ	
		11,5		1,7		

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	300°C – 1 час

Информация по упаковке			Режимы сварочного тока			
				Сварочный ток, А	4	
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикальное	Потолочное	
			Пижнее	снизу-вверх	Потолочное	
3,0	350	1,0; 2,5; 5,0	80-100	70-90	70-90	
4,0	350	1,0; 2,5; 5,0	130-150	100-130	100-130	
5.0	450	1.0: 2.5: 5.0	150-170	130-150	-	

ЦЛ-11

FOCT 9466-75, FOCT 10052-75 ТУ 1273-004-11040008-2016

<u>Э-08Х20Н9Г2Б – ЦЛ-11 – Ø – ВД</u> E – 2004 – Б 20

Описание Электроды с основным видом покрытия предназначены для сварки ответственных изделий из коррозионностойких хромоникелевых сталей марок 12Х18Н10Т, 12Х18Н9Т, 08Х18Н12Т, 08Х18Н12Б и им подобных, когда к металлу шва

предъявляются требования по стойкости к межкристаллитной коррозии.

Металл шва характеризуется высокой стойкостью против межкристаллитной коррозии.

Сварку производят короткой дугой по очищенной от загрязнений поверхности, на постоянном токе обратной полярности.

Содержание ферритной фазы в наплавленном металле: 2-10%.

Классификация и одобрения
НАКС (группы технических устройств: ГО, КО, НГДО, ОХНВП)
Не, е

Химический состав наплавленного металла, %							
C	Mn	Si	Ni	Cr			
0,05-0,12	1,0-2,5	≤1,3	8,0-10,5	18-22			
Химический состав наплавленного металла, %							
Nb	S	Р					
0,7-1,3	≤0,020	≤0,030					

Механические свойства наплавленного			
металла			
Предел текучести, МПа	420		
Предел прочности на разрыв, МПа, не	540		
менее			
Относительное удлинение, %, не менее	22		

Ударная вязкость KCV				
Температура	Дж/см ²			
Ударная вязкост	ь КСU, не менее			
Температура	Дж/см²			
при +20°C	80			
Коэффициент наплавки,	Расход электродов на			
г/А*ч	1 кг наплавленного			
	металла, кг			
11	1,7			

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	300°С – 1 час

Информация по упаковке			Реж	имы сварочного тока			
						Сварочный ток, А	4
Диаметр, мм	Длина, мм	мм Вес пачки, кг	Нижнее	Вертикальное	Потолочное		
			Пижнее	снизу-вверх	ПОТОЛОЧНОЕ		
2,5	350	1,0; 2,5; 4,7	55-65	40-50	40-50		
3,0	350	1,0; 2,5; 5,0	70-90	50-80	50-80		
4,0	450	1,0; 2,5; 6,5	130-150	110-130	110-130		
5,0	450	1,0; 2,5; 6,5	150-180	120-160	-		

ЦТ-15

ГОСТ 9466-75, ГОСТ 10052-75 ТУ 1273-004-11040008-2016 <u> Э-08Х19Н10Г2Б – ЦТ-15 – Ø – ВД</u> E – 2453 – Б 20

Описание

Электроды с основным видом покрытия предназначены для сварки ответственных узлов конструкций из аустенитных сталей марок X20H12TЛ, X16H13Б, 12X18H9T, 12X18H12T и им подобных, работающие при температуре от 570°С до 650°С и высоком давлении, а также сварки тех же марок, когда к металлу шва предъявляются требования стойкости к межкристаллитной коррозии.

Обеспечивают получение металла шва, стойкого к межкристаллитной коррозии, а также обладающего высокой длительной прочностью при рабочих температурах.

Сварку производят короткой дугой по очищенной от загрязнений поверхности, на постоянном токе обратной полярности.

Содержание ферритной фазы в наплавленном металле: 2,0-5,5%.

Классификация и одобрения

НАКС (группы технических устройств: Γ O, KO, HГ μ O, DOXHB μ O)

Химический состав наплавленного металла, %								
C Mn Si Ni Cr								
0,05-0,12	1,0-2,5	≤1,3	8,5-10,5	18,0-20,5				
Химический состав наплавленного металла, %								
Nb S P								
0,7-1,3 ≤0,020 ≤0,030								

Механические свойства наплавленного			
металла			
Предел текучести, МПа	420		
Предел прочности на разрыв, МПа, не	540		
менее			
Относительное удлинение, %, не менее	24		

Ударная вязкость KCV					
Температура	Дж/см²				
Ударная вязкост	ь KCU, не менее				
Температура	Дж/см²				
при +20°C	80				
Коэффициент наплавки,	Расход электродов на				
г/А*ч	1 кг наплавленного				
	металла, кг				
11	1,7				

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	300°С – 1 час

Информация по упаковке			Реж	имы сварочного	тока
				Сварочный ток, А	١
Диаметр, мм	м Длина, мм Вес пачки, кг	Вес пачки, кг	Нижнее	Вертикальное	Потолочное
		Тижнее	снизу-вверх	Потолочное	
2,5	350	1,0; 2,5; 4,7	55-65	40-50	40-50
3,0	350	1,0; 2,5; 5,0	70-90	50-80	50-80
4,0	450	1,0; 2,5; 6,5	130-150	110-130	110-130
5,0	450	1,0; 2,5; 6,5	150-180	120-160	-

ЦТ-28

ΓΟCT 9466-75, ΓΟCT 10052-75 ΤУ 1273-004-11040008-2016 $\frac{\text{Э-08X14H65M15B4}\Gamma2-\text{ЦТ-28}-\textit{Ø}-\text{ВД}}{\text{E 000}-\text{Б 20}}$

1,5

Г =	1				
Описание		Классифи	кация и од	добрения	
Электроды с основным видом					
покрытия предназначены для сварки					
сплавов на никелевой основе марок					
ХН78T, ХН70ВМЮТ и им подобных, а					
также разнородных металлов					
(перлитных, хромистых сталей со	Химичес	кий состав	наппавл	енного мет	аппа %
сплавами на никелевой основе).	C	Mn	Si	Cr	Ni
	≤0,10	1,5-2,5	≤0,5	12,5-15,5	основа
Сварку производят короткой дугой по		кий состав	,		
очищенной от загрязнений	Mo	W	S	P	w
поверхности, на постоянном токе	13.5-16.0	3,5-4,5	≤0.018	≤0,020	
обратной полярности.	13,3-10,0	3,3-4,3	⊒0,010	⊒0,020	
	Maya	нические с	ройотро і		1050
	IVIEXA		воиства г металла	iaiijiabjieni	1010
	Пропольт	кучести, МІ			450
				ИПо но	540
	менее	очности на	разрыв, к	лі іа, не	540
			0/ .		20
	Относител	тьное удлин	нение, %, г	не менее	20
		V======		· KOV	
	_		я вязкост		2
	Тем	пература		Дж/см	2
		дарная вяз	кость КС		
	Температура Дж/см²		2		
	прі	и +20°C		100	
	Коэффиц	иент наплаг	вки, Ра	сход электр	одов на
		г/А*ч	1	кг наплавл	енного
				металла	, кг

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	200°C – 1час

10,5

E	Информация по упаковке			Режі	имы сварочного	тока
				Сварочный ток, А	\	
	Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикальное снизу-вверх	Потолочное
	3,0	350	1,0; 2,5; 5,5	80-100	70-80	70-90
	4,0	350	1,0; 2,5; 5,5	110-140	100-125	100-125

3A-395/9

ΓΟCT 9466-75, ΓΟCT 10052-75 ΤУ 1273-004-11040008-2016 $\frac{\text{Э-11X15H25M6A}\Gamma2 - \text{ЭА-395/9} - \varnothing - \text{ВД}}{\text{E} - 000 - \text{Б} \text{ 20}}$

1,7

Описание		Классифи	кация и од	добрения	
Электроды с основным видом					
покрытия предназначены для сварки					
ответственных конструкций из					
легированных высокопрочных и					
разнородных сталей, а также для					
выполнения наплавки первого слоя	Химичес	кий состав	наплавл	енного мет	алла, %
при двух или трехслойной наплавке	С	Mn	Si	Cr	Ni
коррозионностойкого покрытия и для	≤0,12	1,0-2,2		13,5-17,0	22-27
облицовки кромок изделий из сталей перлитного класса в их соединениях с	Химичес	кий состав	наплавл	енного мет	алла, %
аустенитными сталями.	Мо	N	S	Р	
аустенитными сталями.	4,5-7,0	0,1-0,15	≤0,018	≤0,025	
Сварка выполняется короткой дугой					
по очищенной от загрязнений	Mexa	нические с	войства н	наплавлені	ного
поверхности, на постоянном токе			металла		
обратной полярности.		екучести, М			450
·		очности на	ι разрыв, №	ИПа, не	540
	менее				
	Относите	пьное удли	нение, %, н	не менее	20
			я вязкост		2
	Іем	пература		Дж/см	2
		дарная вяз	кость КС	-	
		пература		Дж/см	2
	пр	и +20°C		100	
	IC and also				
	коэффиц	иент напла		сход электр	
		г/А*ч	1	кг наплавл	
				металла	, KI

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	300°C – 1 час

Информация по упаковке			Режі	имы сварочного	тока
				Сварочный ток, А	١
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикальное снизу-вверх	Потолочное
3,0	350	1,0; 2,5; 5,5	80-100	70-80	70-90
4,0	350	1,0; 2,5; 5,5	110-140	100-125	100-125

Описание

Ток

Электроды для сварки высоколегированных сталей

3A-400/10T

Электроды с основным видом покрытия предназначены для сварки

ГОСТ 9466-75 ТУ 1273-004-11040008-2016 $\frac{\text{Э-07X19H11M3}\Gamma2\Phi - \text{ЭА-400/10T} - \varnothing - \text{ВД}}{\text{E} - 2004 - \text{Б} \, 20}$

Классификация и одобрения

попрытия продпасна топы для свария						
коррозионностойких сталей						
аустенитного класса марок						
08X18H10T, 12X18H101T,						
08X18H12T,08X18H13M2T,	Химический состав наплавленного металла, %					
10X17H13M2T, 10X17H13M3T,	С	Mn	Si	Cr	Ni	
Х18Н22В2Т2, для наплавки кромок и	≤0,09	1,1-3,1	≤0,60	16,8-19	10,0-12,0	
для антикоррозионной наплавки.	Химичес	кий состав	наплавл	енного мет	галла, %	
0	Mo	V	S	Р		
Сварка производится короткой дугой	2,0-3,5	0,30-0,75	≤0,020	≤0,030		
по тщательно очищенной от загрязнений поверхности.				•	•	
загрязнений поверхности.	Mexa	нические с	войства	наплавлен	ного	
Сварка выполняется на постоянном	металла					
токе обратной полярности.	Предел текучести, МПа				≥280	
Toke coparitor hormphoern.	Предел п	очности на	разрыв, І	МПа	≥550	
	Относите	пьное удлин	нение, %		25	
		Ударна	я вязкос	гь KCV		
	Тем	пература		Дж/см	2	
	У	дарная вяз	кость КС	U, не мене	е	
	Тем	пература		Дж/см	2	
	пр	и +20°C		88		
	Коэффиц	иент наплав	вки, Ра	сход элект	родов на	
		г/А*ч		I кг наплавл	енного	
				металла	1, КГ	

Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	300°C – 1 час
Информация по упаковке	Режимы сварочного тока

= (+)

Информация по упаковке			Реж	имы сварочного	тока
				Сварочный ток, А	١
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикальное снизу-вверх	Потолочное
3,0	350	1,0; 2,5; 5,0	70-90	65-80	70-80
4,0	450	1,0; 2,5; 6,8	120-140	90-120	100-120
5,0	450	1,0; 2,5; 5,0	140-160	-	=

ЭА-400/10У

ΓΟCT 9466-75, ΓΟCT 10052-75 ΤУ 1273-004-11040008-2016 $\frac{\text{Э-07X19H11M3}\Gamma2\Phi - \text{ЭА-400/10У} - \varnothing - \text{ВД}}{\text{E} - 2004 - \text{Б} \, 20}$

1,8

Описание		Классифи	кация и од	добрения	
Электроды с основным видом					
покрытия предназначены для сварки					
оборудования из коррозионностойких					
хромоникелевых и хромоникелемолибденовых сталей,					
хромоникелемолиоденовых сталеи, работающих в агрессивных средах					0/
при температуре до 350°С и не		кий состав			1
подвергающегося термообработке	C ≤0,09	Mn 1,5-3,0	Si ≤0,60	Cr 17-20	Ni 9,5-12,0
после сварки, а также для наплавки		кий состав			
второго (коррозионностойкого) слоя	Mo	V	S	P	iajijia, 76
на поверхность изделий из	2,0-3,5	0,3-0,75	≤0,020	≤0.030	
перлитных сталей, облицовки кромок	, = -, =	-,, -	-,	,	1
таких сталей в их соединениях с аустенитными сталями.	Mexa	нические с	войства н	аплавлен	ного
аустститтыми сталими.			металла		
Сварка выполняется короткой дугой	Предел текучести, МПа, не менее			340	
по очищенной от загрязнений	Предел прочности на разрыв, МПа, не			540	
поверхности, на постоянном токе	менее Относительное удлинение, %, не м				
обратной полярности.	Относител	пьное удлин	ение, %, н	не менее	25
Coponyouse donnutues does to		Vпариа	я вязкост	KCV	
Содержание ферритной фазы в наплавленном металле: 2-8%.	Тем	лература	я вязкост	Дж/см	2
Hallilabilennow Welailie. 2-070.	TCIVI	поратура		Д/К/СК	•
	У	дарная вяз	кость KCl	Ј, не мене	е
	Тем	пература		Дж/см	l ²
	пр	и +20°C		88	
		· · · · · · · · · · · · · · · · · · ·			
		иент наплав		сход элект	
		г/А*ч	1	кг наплавл	
				металла	a, Kr

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	300°C – 1 час

Информация по упаковке			Режі	имы сварочного	тока	
				Сварочный ток, А	١	
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикальное	Потолочное	
			Пижнее	снизу-вверх	ПОТОЛОЧНОЕ	
3,0	350	1,0; 2,5; 5,0	70-90	65-80	70-80	
4,0	450	1,0; 2,5; 6,8	120-140	90-120	100-120	
5,0	450	1,0; 2,5; 5,0	140-160	-	-	

Электроды для сварки легированных теплоустойчивых сталей

ТМЛ-1У

ΓΟCT 9466-75, ΓΟCT 9467-75 ΤУ 1272-003-11040008-2016 <u>Э-09X1M – ТМЛ-1У – Ø – ТД</u> E – 04 – Б 20

Описание	Классификация и одобрения
Электроды с основным видом	
покрытия предназначены для сварки	
паропроводов из сталей марок 12МХ,	
15ХМ, 12Х1МФ, 15Х1М1Ф, 20ХМФЛ,	
работающих при температуре до	
540°С, и элементов поверхностей	Химический состав наплавленного метапла. %

Сварка выполняется короткой дугой по тщательно очищенной от загрязнений поверхности, на постоянном токе обратной полярности.

нагрева из сталей марок 12X1МФ, 12X2МФСР и 12X2МФБ независимо

от рабочей температуры.

Химический состав наплавленного металла, %						
O	Mn	Si	Cr	Мо		
0,06-0,12	0,5-0,9	0,15-0,40	0,8-1,0	0,4-0,7		
Химичес	кий состав	наплавле	нного мет	алла, %		
S	Р					
≤0,025	≤0,035					

Механические свойства наплавлен	ного				
металла					
Предел текучести, МПа	460				
Предел прочности на разрыв, МПа, не	≥470				
менее					
Относительное удлинение, %, не менее	≥18				

Ударная вязкость KCV			
Температура	Дж/см²		
Ударная вязкост	ь KCU, не менее		
Температура	Дж/см²		
при +20°C	≥88		
Коэффициент наплавки,	Расход электродов на		
г/А*ч	1 кг наплавленного		
	металла, кг		
9,6	1,5		

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	350°С – 1 час

Информация по упаковке		Режимы сварочного тока			
Пиомотр	иомотр		Сварочный ток, А		
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикальное	Потолочное
MIM			пижнее	снизу-вверх	ПОТОЛОЧНОЕ
3,0	350	1,0; 2,5; 5,0	80-100	60-90	60-90
4,0	450	1,0; 2,5; 6,0	130-170	100-140	100-140
5,0	450	1,0; 2,5; 5,0	170-200	140-160	140-160

Электроды для сварки легированных теплоустойчивых сталей

ТМЛ-3У

ΓΟCT 9466-75, ΓΟCT 9467-75 ΤУ 1272-003-11040008-2016 <u>Э-09Х1МФ – ТМЛ-3У – Ø – ТД</u> E – 16 – Б 20

Описание
Электроды с основным видом
покрытия предназначены для сварки
паропроводов сталей из марок
12Х1МФ, 15Х1М1Ф, 20ХМФЛ,
15Х1М1ФЛ, работающих при
температуре до 570°C, и элементов
поверхностей нагрева из сталей
марок 12Х1МФ, 12Х2МФБ И
12X2МФСР независимо от рабочей
температуры, а также для заварки
дефектов в элементах из тех же
сталей.

Сварка выполняется короткой дугой по тщательно очищенной от загрязнений поверхности, на постоянном токе обратной полярности.

Химический состав наплавленного металла, %				
С	Mn	Si	Cr	Мо
0,06-0,12	0,5-0,9	0,15-0,40	0,80-1,25	0,4-0,7
Химический состав наплавленного металла, %				
V	S	Р		
0,1-0,3	≤0,025	≤0,030		

Классификация и одобрения

Механические свойства наплавленного		
металла		
Предел текучести, МПа	480	
Предел прочности на разрыв, МПа, не	≥490	
менее		
Относительное удлинение, %, не менее	≥16	

Ударная вязкость KCV				
Температура	Дж/см²			
•				
Ударная вязкост	ь КСU, не менее			
Температура	Дж/см²			
при +20°C	≥78			
Коэффициент наплавки,	Расход электродов на			
г/А*ч	1 кг наплавленного			
	металла, кг			
9,5	1,5			

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	350°С – 1 час

Информация по упаковке		Режимы сварочного тока			
				Сварочный ток, А	١
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикальное	Потолочное
			пижнее	снизу-вверх	ПОТОПОННОЕ
3,0	350	1,0; 2,5; 5,0	80-110	60-90	60-90
4,0	450	1,0; 2,5; 6,0	130-170	100-140	100-140
5,0	450	1,0; 2,5; 5,0	170-200	140-180	140-160

Электроды для сварки легированных теплоустойчивых сталей

ЦЛ-39

ΓΟCT 9466-75, ΓΟCT 9467-75 ΤУ 1272-003-11040008-2016 <u>Э-09Х1МФ – ЦЛ-39 – Ø – ТД</u> E – 16 – Б 20

Описание
Электроды с основным видом
покрытия предназначены для сварки
элементов поверхностей нагрева
котлов и стыков труб диаметром не
более 100 мм с толщиной стенки до 8
мм из сталей марок типа 12Х1МФ,
12Х2ФСР, 12Х2МФБ и им подобных
работающих при температуре не
более 565°C.

Сварка выполняется короткой дугой по тщательно очищенной от загрязнений поверхности, на постоянном токе обратной полярности.

Химический состав наплавленного металла, %				алла, %
C	Mn	Si	Cr	Мо
0,06-0,12	0,5-0,9	0,15-0,40	0,80-1,25	0,4-0,7
Химический состав наплавленного металла, %				
V	S	Р		
0,1-0,3	≤0,025	≤0,030		

Классификация и одобрения

Механические свойства наплавленного		
металла		
Предел текучести, МПа	480	
Предел прочности на разрыв, МПа, не	≥490	
менее		
Относительное удлинение, %, не менее	≥16	

Ударная вязкость KCV					
Температура	Дж/см²				
Ударная вязкост	ь KCU, не менее				
Температура	Дж/см ²				
при +20°C	≥78				
Коэффициент наплавки,	Расход электродов на				
г/А*ч	1 кг наплавленного				
	металла, кг				
8	1,7				

Ток	= (+)
Пространственные положения	1, 2, 3, 4, 6
Режим прокалки	350°С – 1 час

Информация по упаковке		Реж	имы сварочного	тока	
				Сварочный ток, А	4
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикальное	Потолочное
			Пижнее	снизу-вверх	ПОТОПОЯННЕ
2,5	350	1,0; 2,5; 4,2	75-90	70-85	65-85

Электроды для резки листа

O3P-1

и т.п.

ГОСТ 9466-75 ТУ 1272-008-11040008-2016

03P-1 - Ø

Описание	Классификация и одобрения
Электроды предназначены для ручной дуговой резки стержневой напрягаемой арматуры железобетонных конструкций, а также	
для резки, строжки, прошивки отверстий, удаления дефектных	Характеристики электродов
мест, разделки дефектов литья и прочих изделий из сталей любых марок, чугуна, медных сплавов.	Скорость резки (для диаметра 4,0 мм):

Обеспечивают получение чистого реза (без грата и натеков на поверхности реза).

Пригодны для удаления дефектных

мест сварных швов или их участков,

прихваток, заклёпок, болтов, трещин

Требования к состоянию поверхности резки не предъявляется. Резка возможна во всех положениях в пространстве. Положение разрезаемой детали должно обеспечить металлу свободно стекать вниз.

- Низкоуглеродистая сталь типа Ст3 толщиной 14 мм — 12 м/ч - Высоколегированная сталь типа 08Х18Н9Т

толщиной 12 мм – 12 м/ч
- Расход электродов на 1 кг выплавленного металла – не более 0,6 кг.

Ток	~, = (+)
Пространственные положения	1, 2, 3, 4, 5, 6
Напряжение холостого хода	70
источника переменного тока, V	70
Режим прокалки	170°С – 1 час

Информация по упаковке		аковке	Режимы сварочного тока
Диаметр, мм	Длина, мм	Вес пачки, кг	Сварочный ток, А
3,0	350	1,0; 2,5; 5,0	100-150
4,0	450	1,0; 2,5; 6,0	260-300
5,0	450	1,0; 2,5; 5,0	420-480
6,0	450	1,0; 2,5; 5,0	600-680

HP-70

ΓΟCT 9466-75, ΓΟCT 10051-75 ΤУ 1272-005-11040008-2016 $\frac{\text{9-30}\text{\Gamma2XM} - \text{HP-70} - \text{\O} - \text{H}\text{\LaTeX}}{\text{E} - 350/39 - 1 - \text{Б} \ 40}$

Описание	Кла	ссифика	ция и од	обрения	
Электроды с основным видом					
покрытия предназначены для					
наплавки деталей из углеродистых и					
низколегированных сталей					
(например, валы, оси, посадочные					
места и другие детали	Химический	состав н	аплавле	нного мет	алла. %
железнодорожного транспорта),		Mn	Si	Cr	Mo
работающих в условиях трения и		5-2,0	≤0.15	0,5-1,0	0.3-0.7
ударных нагрузок.	Химический	, ,	-, -		-,,
	S	P	ianijiabjio		u3131u, 70
Наплавленный металл		0,040			
характеризуется хорошей	20,000	0,040			
износостойкостью и	Мохании	OCKNO CD	ойства н	аплавлен	ного
удовлетворительной	INICAGNIA		оиства п еталла	аннавнеп	пого
сопротивляемостью ударам.		IVI	Clasisia		
Стабильность свойств достигается при соблюдении постоянных условий наплавки.	Твердость наі в исход			пла после ,5-42,5 HR	
Наплавку производят с поперечными колебаниями электрода, ширина валика 100-150 мм. Наплавка в нижнем положении на постоянном токе обратной полярности.					
	Коэффициент г/А*ч			од электро г наплавле металла	енного
	9			1,6	

Ток	= (+)
Пространственные положения	1
Режим прокалки	200°C – 1 час

Информация по упаковке			Режимы сварочного тока
Диаметр, мм	Длина, мм	Вес пачки, кг	Сварочный ток, А
4,0	450	1,0; 2,5; 6,5	180-200
5,0	450	1,0; 2,5; 6,5	220-240

03И-3

ΓΟCT 9466-75, ΓΟCT 10051-75 ΤУ 1272-005-11040008-2016 $\frac{\text{Э-90X4M4B}\Phi - \text{О3И-3} - \textit{Ø} - \text{H}\Gamma}{\text{E} - 750/61 - 2 - \text{Б} \text{ 40}}$

Описание		Классифи	кация и о	добрения	
Электроды с основным видом					
покрытия предназначены для					
наплавки штампов холодного и					
горячего деформирования металлов,					
а также быстроизнашивающихся					
деталей горно-металлургического и	Химичес	кий состав	наплавл	енного мет	галла, %
станочного оборудования.	С	Mn	Si	Cr	Mo
_	0,6-1,2	≤0,7	8,0≥	2,8-4,3	2,4-4,6
Наплавленный металл обладает	Химичес	кий состав	наплавл	енного мет	галла, %
высокой износостойкостью в	V	W	S	Р	<u> </u>
условиях эксплуатации штампов,	0,6-1,3	0,9-1,7	≤0,030	≤0,035	
удовлетворительно сопротивляется	-,-,-	-,- ,	-,		
ударам.	Mexa	нические с	войства	наплавлен	ного
Honnors and the second of the			металла		
Наплавку производят в один – четыре слоя с предварительным подогревом	Твердость наплавленного металла после				
деталей до температуры 300-600°С (в	термообработки – 59-64 HRC				
зависимости от марки стали наплавляемой детали). После	(отпуск при температуре 560°C, выдержка 2 ч).				ка 2 ч).
наплавляемой детали). После наплавки рекомендуется медленное	(,)	-, -	,.
охлаждение (с печью, в песке и др.),					
затем отпуск или отжиг.					
Satewie Offiger union official.					
Возможна наплавка ванным способом					
на повышенных режимах.					
Наплавка выполняется на					
паплавка выполняется на постоянном токе обратной					
полярности.					
11077715100171.					
		иент наплав	-	ход электр	
		г/А*ч		кг наплавле	
				металла	, кг
		9,5		1,4	

Ток	= (+)
Пространственные положения	1
Режим прокалки	350°С – 1 час

Информация по упаковке			Режимы сварочного тока
Диаметр, мм	Длина, мм	Вес пачки, кг	Сварочный ток, А
3,0	350	1,0; 2,5; 5,0	80-100
4,0	450	1,0; 2,5; 6,5	120-160
5,0	450	1,0; 2,5; 6,0	160-240

O3H-6

ΓΟCT 9466-75, ΓΟCT 10051-75 ΤУ 1272-005-11040008-2016 $\frac{9-100X5C4\Gamma3P - O3H-6 - Ø - HД}{E-650/57-1-E40}$

Описание		Классифи	кация и од	добрения	
Электроды с основным видом					
покрытия предназначены для					
наплавки быстроизнашивающихся					
деталей машин горнодобывающего,					
строительного и другого					-
оборудования, работающего в	Химичес	кий состав	наплавле	енного мет	галла, %
условиях интенсивного абразивного	С	Mn	Si	Cr	В
изнашивания и значительных	0,8-1,1	2,1-3,5	3,2-4,2	3,8-5,5	0,8-1,2
ударных нагрузок.	Химичес	кий состав	наплавле	енного мет	галла, %
	S	Р			
Наплавленный металл обладает	≤0,030	≤0,030			
повышенной сопротивляемостью к образованию трещин при					
многослойной наплавке и при	Mexa	нические с	войства н	аплавлен	ного
эксплуатации в условиях			металла		
интенсивных ударных нагрузок.					
типоположударном нагрусскі	Твердость	ь наплавлен	ного мета	лла после	наплавки
Наплавка в нижнем положении на	В	исходном о	состоянии	56-59 HRC	
постоянном токе обратной					
полярности.					
•					
	Коэффиц	иент наплав	вки. Рас	код электро	одов на 1
		г/А*ч		г наплавле	
				металла	
		11,5		1,65	

Ток	= (+)
Пространственные положения	1
Режим прокалки	340°C – 1 час

Информация по упаковке		аковке	Режимы сварочного тока
Диаметр, мм	Длина, мм	Вес пачки, кг	Сварочный ток, А
3,0	350	1,0; 2,5; 4,5	120-140
4,0	450	1,0; 2,5; 6,0	140-160
5,0	450	1,0; 2,5; 6,0	160-180

O3H-7

ΓΟCT 9466-75, ΓΟCT 10051-75 ΤУ 1272-005-11040008-2016 $\frac{\text{Э-70X4} \text{Г4C3P1} \Phi - \text{О3H-7} - \emptyset - \text{НД}}{\text{E} - 650/57 - 1 - \text{Б} \text{ 40}}$

Описание		Классифи	кация и од	добрения	
Электроды с основным видом					
покрытия предназначены для					
наплавки быстроизнашивающихся					
деталей, преимущественно из					
высокомарганцовистой стали марки					
110Г13Л, работающих в условиях	Химичес	кий состав	наплавле	енного мет	галла, %
интенсивного абразивного	С	Mn	Si	Cr	В
изнашивания и значительных	0,5-0,8	3,0-5,0	2,5-3,5	3,5-5,0	0,9-1,3
ударных нагрузках.		кий состав	наплавле	енного мет	галла, %
0	V	S	Р		
Электроды обеспечивают получение	0,4-0,7	≤0,030	≤0,030		
наплавленного металла, стойкого к		,	*		
образованию трещин при многослойной наплавке и в условиях	Mexa	нические с	войства н	аплавлен	ного
эксплуатации.			металла		
Эксплуатации.					
Наплавка в нижнем положении на	Твердость	ь наплавлен	ного мета	лла после	наплавки
постоянном токе обратной	В	исходном о	остоянии	56-59 HRC	
полярности.					
	Koadidia	иент наплав	NN Pac	код электро	олов на 1
		лент наплас г/А*ч	·	г наплавле	
	'	1// \ 7	N	металла	
		12		1,4	, 101
1	1			.,,.	

Ток	= (+)
Пространственные положения	1
Режим прокалки	350°C – 1 час

Информация по упаковке		аковке	Режимы сварочного тока
Диаметр, мм	Длина, мм	Вес пачки, кг	Сварочный ток, А
4,0	450	1,0; 2,5; 6,2	150-170
5,0	450	1,0; 2,5; 5,0	180-200

Пространственные положения

Режим прокалки

O3H-300M

ΓΟCT 9466-75, ΓΟCT 10051-75 ΤУ 1272-005-11040008-2016 $\frac{\text{9-11} \Gamma \text{3} \text{C1} - \text{O3H-300M} - \textit{Ø} - \text{H} \underline{\textit{H}}}{\text{E} - 300/33 - 1 - \text{Б}} \, 40$

		Миссифи	кации и од	добрения	
Электроды с основным видом					
покрытия предназначены для					
наплавки деталей из углеродистых и					
низколегированных сталей					
(например, валы, оси, автосцепки,					
крестовины и другие детали		кий состав			
автомобильного и железнодорожного	С	Mn	Si	S	Р
транспорта), работающих в условиях	≤0,15	2,5-3,5	0,9-1,6	≤0,030	≤0,040
трения и ударных нагрузок.	Химичес	кий состав	наплавле	енного мет	алла, %
Наплавленный металл					
характеризуется стабильностью					
показателей твёрдости и					
износостойкости в широком	Iviexa	нические с		аплавлен	ного
диапазоне скоростей охлаждения			металла		
наплавляемых деталей.	Трордоот	поппорпо	IIIOFO MOTO	550 500 500	LIGHTODIA.
		ь наплавлен исходном о			
Наплавка в нижнем положении на		исходном с	остолнии -	00 37 1110	•
постоянном токе обратной					
полярности.					
	Коэффин	иент наплав	вки. Расх	код электро	одов на 1
		г/А*ч		г наплавле	
				металла	
		10,5		1.8	,

Информация по упаковке		аковке	Режимы сварочного тока
Диаметр, мм	Длина, мм	Вес пачки, кг	Сварочный ток, А
3,0	350	1,0; 2,5; 4,5	90-120
4,0	450	1,0; 2,5; 6,0	140-160
5,0	450	1,0; 2,5; 6,0	160-180

300°C – 1 час

= (+)

O3H-400M

ΓΟCT 9466-75, ΓΟCT 10051-75 ΤУ 1272-005-11040008-2016 $\frac{\text{9-15} \text{Г4C1} - \text{O3H-400M} - \textit{Ø} - \text{H} \underline{\textit{\Pi}}}{\text{E} - 400/42 - 1 - \text{Б}} \, 40$

Описание		Классифи	кация и од	обрения		
Электроды с основным видом						
покрытия предназначены для						
наплавки деталей из углеродистых и						
низколегированных сталей						
(например, валы, оси, автосцепки, крестовины и другие детали						
автомобильного и железнодорожного		кий состав				
транспорта), работающих в условиях	C	Mn	Si	S	P	
трения и ударных нагрузок.	≤0,17	3,0-4,0	1,3-2,0	≤0,030	≤0,040	
. регии и удариви нагрусски	Химичес	кий состав	наплавле	енного мет	галла, %	
Наплавленный металл					-	
характеризуется стабильностью						
показателей твёрдости и	Move		ройотро			
износостойкости в широком	Механические свойства наплавленного металла					
диапазоне скоростей охлаждения			WCTajjja			
наплавляемых деталей.	Тверлості	ь наплавлен	ного мета	ппа поспе	наппавки	
Наплавка в нижнем положении на		исходном (
постоянном токе обратной						
полярности.						
no process.						
		иент наплав	вки, Расх	од электро	одов на 1	
		г/А*ч	К	г наплавле	енного	
				металла	, КГ	
		8,5		1,5		

Ток	= (+)
Пространственные положения	1
Режим прокалки	300°C – 1 час

Информация по упаковке		аковке	Режимы сварочного тока
Диаметр, мм	Длина, мм	Вес пачки, кг	Сварочный ток, А
3,0	350	1,0; 2,5; 5,0	90-120
4,0	450	1,0; 2,5; 6,0	140-160
5,0	450	1,0; 2,5; 6,0	160-180

О3Ш-3

ΓΟCT 9466-75, ΓΟCT 10051-75 ΤУ 1272-005-11040008-2016 <u>Э-37Х9С2 – ОЗШ-3 – Ø – НД</u> E – 650/57 – 1 – Б 30

Описание		Классифик	ация и од	добрения		
Электроды с основным видом						
покрытия предназначены для						
наплавки обрезных и вырубных						
штампов холодного и горячего						
деформирования металлов и других						
быстроизнашивающихся деталей		кий состав				
машин.	С	Mn	Si	Cr	S	
Наплавленный металл обладает	0,25-0,50	0,4-1,0	1,4-2,8	8,0-11,0	≤0,030	
высокой износостойкостью в		кий состав	наплавл	енного мет	алла, %	
условиях эксплуатации штампов,	Р.					
удовлетворительно сопротивляется	≤0,035					
ударам.						
	Механические свойства наплавленного					
Наплавку производят в один – четыре			иеталла			
слоя с предварительным подогревом деталей до температуры 300-400°С (в	Твердость наплавленного металла после наплавки					
зависимости от марки стали		исходном с				
наплавляемой детали).						
Допускается наплавка без подогрева.						
11 7						
Наплавка производится на						
постоянном токе обратной						
полярности.						
	Коэффици	ент наплав	ки, Рас	ход электро	одов на 1	
		г/А*ч	-	г наплавле		
				металла	, кг	
		9,5		1,7		

Ток	= (+)
Пространственные положения	1, 2, 3, 4
Режим прокалки	300°C – 1 час

Информация по упаковке			Режимы сва	рочного тока
			Сварочный ток, А	
Диаметр, мм	Длина, мм Вес пачки, кг		Нижнее	Вертикальное
			Тижнее	снизу-вверх
3,0	350	1,0; 2,5; 4,7	110-130	90-110
4,0	450	1,0; 2,5; 6,0	130-150	110-130
5,0	450	1,0; 2,5; 5,0	160-180	130-150

03Ш-6

ГОСТ 9466-75 ТУ 1272-005-11040008-2016 $\frac{9-10X33H11M3C\Gamma - O3Ш-6 - Ø - HД}{E-650/57-2-E40}$

Описание	Классификация и одобрения				
Электроды с основным видом покрытия предназначены для наплавки бойков радиально-ковочных машин, штампов холодного и горячего деформирования металлов, ножей горячей резки металла, быстроизнашивающихся деталей металлургического, станочного и другого оборудования, работающих в тяжёлых температурнодеформационных условиях при температуре до 950°C.	C ≤0,13	кий состав Мп 0,8-2,3 кий состав Ѕ ≤0,025	Si 0,8-2,0	Cr 30-34	Ni 9,0-13,0
Наплавленный металл характеризуется высокой теплостойкостью, горячей твёрдостью и износостойкостью. В исходном состоянии обрабатывается режущим инструментом. Наплавку деталей из закаливающихся сталей ведут с предварительным и сопутствующим подогревом до температуры 300-450°С (нижнее значение для сталей марок типа 5ХНМ). Наплавку производят вразброс участками с минимальным тепловложением. Наплавку производят на постоянном	Механические свойства наплавленного металла Твердость наплавленного металла: - после наплавки в исходном состоянии 26-37 НК - после термообработки 55-60 НКС (отпуск при температуре 850°С, выдержка 3 ч, охлаждение на воздухе).				
токе обратной полярности.		иент наплав г/А*ч 		кг наплавле металла	енного
İ		13		1,4	

Ток	= (+)
Пространственные положения	1
Режим прокалки	200°C – 1 час

Информация по упаковке		аковке	Режимы сварочного тока	
Диаметр, мм Длина, мм Вес пачки, кг		Вес пачки, кг	Сварочный ток, А	
3,0	350	1,0; 2,5; 5,0	70-90	
4,0	350	1,0; 2,5; 5,0	110-130	

03Ш-8

ΓΟCT 9466-75, ΓΟCT 10051-75 ΤУ 1272-005-11040008-2016 $\frac{\text{Э-11X31H11M3}\Gamma\text{СЮ}\Phi - \text{ОЗШ-8} - \varnothing - \text{НД}}{\text{E} - 600/54 - 2 - \text{Б}} \text{ 40}$

Описание	Классификация и одобрения				
Электроды с основным видом					
покрытия предназначены для					
наплавки кузнечно-штамповой					
оснастки горячего деформирования металлов, быстроизнашивающихся					
деталлов, оыстроизнашивающихся деталей металлургического и другого					•
оборудования, работающего в		кий состав			
тяжёлых условиях при температуре	C	Mn	Si	Cr	Ni
до 1100°C.	≤0,13	0,9-1,5	1,0-1,4	30-32	9,0-11,0
He 1.00 C.		кий состав			талла, %
Наплавленный металл	V	Mo	S	P	
характеризуется высокой	0,2-0,3	2,8-3,5	≤0,020	≤0,02	
теплостойкостью, горячей					
твёрдостью и износостойкостью.	Механические свойства наплавленного				
В исходном состоянии			металла		
обрабатывается режущим	Т	ODDOCTI IIO	ппорпоши	NO MOTORIO	0.
инструментом.	Твердость наплавленного металла: - после наплавки в исходном состоянии 27-32 HRC				
11×					
Наплавку деталей из	- после термообработки 52-58 HRC (отпуск при температуре 720°C, выдержка 3 ч,				
закаливающихся сталей ведут с предварительным и сопутствующим	()		ение на во		
подогревом до температуры 300-		• • • • • • • • • • • • • • • • • • • •		,	
450°С (в зависимости от марки					
стали). Наплавку производят					
вразброс участками с минимальным					
тепловложением.					
Наплавку производят на постоянном					
токе обратной полярности					
	Коэффиц	иент наплав	вки. Рас	ход электр	одов на 1
		г/А*ч		кг наплавле	
				металла	
		14		1,4	

Ток	= (+)
Пространственные положения	1
Режим прокалки	200°C – 1 час

Информация по упаковке		аковке	Режимы сварочного тока
Диаметр, мм	метр, мм Длина, мм Вес пачки, кг		Сварочный ток, А
3,0	350	1,0; 2,5; 5,0	90-100
4,0	350	1,0; 2,5; 5,0	140-150
5,0	450	1,0; 2,5	160-200

ОМГ-Н

ΓΟCT 9466-75, ΓΟCT 10051-75 ΤУ 1272-005-11040008-2016 $\frac{9-65X11H3-OM\Gamma-H-Ø-HД}{E-300/33-1-Б40}$

Описание	Классификация и одобрения				
Электроды с основным видом					
покрытия предназначены для					
наплавки рабочих поверхностей и					
заварки дефектов литья деталей из					
высокомарганцовистой стали марки					
110Г13Л.	Химичес	кий состав	наплавл	енного мет	галла, %
	С	Mn	Si	Cr	Ni
Наплавку производят при	0,5-0,8	≤0,7	≤0,3	10-12	2,5-3,5
минимально возможном разогреве	Химичес	кий состав	наплавл	енного мет	талла, %
деталей.	S	Р			
Наплавка на постоянном токе	≤0,030	≤0,035			
обратной полярности.					
ооратной полярности.	Mexa	нические с	войства	наплавлен	ного
металла					
		ь наплавлен исходном с			
	Коэффиці	ент наплав	ки, Рас	ход электр	одов на 1
		г/А*ч		кг наплавле	енного
				металла	ı, кг
		8,5		1,5	

Ток	= (+)
Пространственные положения	1
Режим прокалки	200°C – 1 час

Информация по упаковке		аковке	Режимы сварочного тока
Диаметр, мм Длина, мм Вес пачки, кг		Вес пачки, кг	Сварочный ток, А
4,0	4,0 450 1,0; 2,5; 6,0		120-140
5,0	450	1,0; 2,5; 5,0	160-180

T-590

Ток

Режим прокалки

Пространственные положения

ΓΟCT 9466-75, ΓΟCT 10051-75 ΤУ 1272-005-11040008-2016 $\frac{\text{9-320X25C2}\Gamma\text{P} - \text{T-590} - \textit{\emptyset} - \text{H}\Gamma}{\text{E} - 750/61 - 1 - \Pi \text{ 42}}$

Электроды со специальным видом покрытия предназначены для наплавки быстроизнашивающихся деталей машин из стали и чугуна, работающих в условиях абразивного изнашивания без ударных нагрузок. Наплавленный металл обладает высокой износостойкостью в условиях истирания абразивными материалами, пониженной сопротивляемостью ударам, склонен к образованию трещин, не снижающих обычно эксплуатационную стойкость наплавленных деталей. Во избежание выкрашивания не рекомендуется производить наплавку рабочих поверхностей стальных деталей более чем в два слоя, чугунных − в один слой. Для наплавки больших толщин нижние спои наплавляют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, Расход электродов на 1 кг наплавленного металла, кг наплавленного металла. Расход электродов на 1 кг наплавленного металла, кг наплавленного металла.	Описание		Классифи	кация и с	добрения		
наплавки быстроизнашивающихся деталей машин из стали и чугуна, работающих в условиях абразивного изнашивания без ударных нагрузок. Наплавленный металл обладает высокой износостойкостью в условиях истирания абразивными материалами, пониженной сопротивляемостью ударам, склонен к образованию трещин, не снижающих обычно эксплуатационную стойкость наплавленных деталей. Во избежание выкрашивания не рекомендуется производить наплавку рабочих поверхностей стальных деталей более чем в два слоя, чугунных — в один слой. Для наплавки больших толщин нижние слои наплавляют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, Расход электродов на 1 кг наплавленного металла, кг	Электроды со специальным видом						
деталей машин из стали и чугуна, работающих в условиях абразивного изнашивания без ударных нагрузок. Наплавленный металл обладает высокой износостойкостью в условиях истирания абразивными материалами, пониженной сопротивляемостью ударам, склонен к образованию трещин, не снижающих обычно эксплуатационную стойкость наплавленных деталей. Во избежание выкрашивания не рекомендуется производить наплавку рабочих поверхностей стальных деталей более чем в два слоя, чугунных − в один слой. Для наплавки больших толщин нижние слои наплавлют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, Г/А*ч Коэффициент наплавки, Расход электродов на 1 кг наплавленного металла, кг	покрытия предназначены для						
работающих в условиях абразивного изнашивания без ударных нагрузок. Наплавленный металл обладает высокой износостойкостью в условиях истирания абразивными материалами, пониженной сопротивляемостью ударам, склонен к образованию трещин, не снижающих обычно эксплуатационную стойкость наплавленных деталей. Во избежание выкрашивания не рекомендуется производить наплавку рабочих поверхностей стальных деталей более чем в два слоя, чугунных − в один слой. Для наплавки больших толщин нижние слои наплавляют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, Расход электродов на 1 кг наплавленного металла, кг	наплавки быстроизнашивающихся						
Изнашивания без ударных нагрузок. Наплавленный металл обладает высокой износостойкостью в условиях истирания абразивными материалами, пониженной сопротивляемостью ударам, склонен к образованию трещин, не снижающих обычно эксплуатационную стойкость наплавленных деталей. Во избежание выкрашивания не рекомендуется производить наплавку рабочих поверхностей стальных деталей более чем в два слоя, чугунных − в один слой. Для наплавки больших толщин нижние слои наплавляют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Химический состав наплавленного металла, % 2,9-3,5 1,0-1,5 2,0-2,5 22-27 0,5-1,5 Химический состав наплавленного металла, % S P	деталей машин из стали и чугуна,						
Наплавленный металл обладает высокой износостойкостью в условиях истирания абразивными материалами, пониженной сопротивляемостью ударам, склонен к образованию трещин, не снижающих обычно эксплуатационную стойкость наплавленных деталей. Во избежание выкрашивания не рекомендуется производить наплавку рабочих поверхностей стальных деталей более чем в два слоя, чугуных – в один слой. Для наплавки больших толщин нижние слои наплавляют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, г/А*ч Расход электродов на 1 кг наплавленного металла, кг	работающих в условиях абразивного					4	
Наплавленный металл обладает высокой износостойкостью в условиях истирания абразивными материалами, пониженной сопротивляемостью ударам, склонен к образованию трещин, не снижающих обычно эксплуатационную стойкость наплавленных деталей. Во избежание выкрашивания не рекомендуется производить наплавку рабочих поверхностей стальных деталей более чем в два слоя, чугунных – в один слой. Для наплавки больших толщин нижние слои наплавляют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, г/А*ч Коэффициент наплавки, г/А*ч Расход электродов на 1 кг наплавленного металла, кг	изнашивания без ударных нагрузок.	Химичес	кий состав	наплавл	енного ме	талла, %	
высокой износостойкостью в условиях истирания абразивными материалами, пониженной сопротивляемостью ударам, склонен к образованию трещин, не снижающих обычно эксплуатационную стойкость наплавленных деталей. Во избежание выкрашивания не рекомендуется производить наплавку рабочих поверхностей стальных деталей более чем в два слоя, чугунных − в один слой. Для наплавки больших толщин нижние слои наплавляют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, Расход электродов на 1 кг наплавленного металла, кг	, , , , , , , , , , , , , , , , , , ,	С	Mn	Si	Cr	В	
условиях истирания абразивными материалами, пониженной сопротивляемостью ударам, склонен к образованию трещин, не снижающих обычно эксплуатационную стойкость наплавленных деталей. Во избежание выкрашивания не рекомендуется производить наплавку рабочих поверхностей стальных деталей более чем в два слоя, чугунных − в один слой. Для наплавки больших толщин нижние слои наплавляют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, ГА*ч Расход электродов на 1 кг наплавленного металла, кг	• •	2,9-3,5	1,0-1,5	2,0-2,5	22-27	0,5-1,5	
условиях истирания аоразивными материалами, пониженной сопротивляемостью ударам, склонен к образованию трещин, не снижающих обычно эксплуатационную стойкость наплавленных деталей. Во избежание выкрашивания не рекомендуется производить наплавку рабочих поверхностей стальных деталей более чем в два слоя, чугунных – в один слой. Для наплавки больших толщин нижние слои наплавляют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, Расход электродов на 1 кг наплавленного металла, кг		Химичес	кий состав	наплавл	енного ме	талла, %	
сопротивляемостью ударам, склонен к образованию трещин, не снижающих обычно эксплуатационную стойкость наплавленных деталей. Во избежание выкрашивания не рекомендуется производить наплавку рабочих поверхностей стальных деталей более чем в два слоя, чугунных — в один слой. Для наплавки больших толщин нижние слои наплавляют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, г/А*ч Коэффициент наплавки, г/А*ч Коэффициент наплавки, кг наплавленного металла, кг	, ,						
к образованию трещин, не снижающих обычно эксплуатационную стойкость наплавленных деталей. Во избежание выкрашивания не рекомендуется производить наплавку рабочих поверхностей стальных деталей более чем в два слоя, чугунных — в один слой. Для наплавки больших толщин нижние слои наплавляют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, г/А*ч Коэффициент наплавки, кг наплавленного металла, кг	•	≤0,035	≤0,040				
механические свойства наплавленного металла Твердость наплавленного металла после наплавки в исходном состоянии 58-64 HRC. Твердость наплавленного металла после наплавки в исходном состоянии 58-64 HRC. Твердость наплавленного металла после наплавки в исходном состоянии 58-64 HRC.		,	,	ı	II.		
эксплуатационную стойкость наплавленных деталей. Во избежание выкрашивания не рекомендуется производить наплавку рабочих поверхностей стальных деталей более чем в два слоя, чугунных — в один слой. Для наплавки больших толщин нижние слои наплавляют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, г/А*ч Коэффициент наплавки, кг наплавленного металла, кг		Mexa	нические с	войства	наплавлен	ІНОГО	
наплавленных деталей. Во избежание выкрашивания не рекомендуется производить наплавку рабочих поверхностей стальных деталей более чем в два слоя, чугунных — в один слой. Для наплавки больших толщин нижние слои наплавляют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, г/А*ч Коэффициент наплавки, кг наплавленного металла, кг	•						
Во избежание выкрашивания не рекомендуется производить наплавку рабочих поверхностей стальных деталей более чем в два слоя, чугунных — в один слой. Для наплавки больших толщин нижние слои наплавляют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, г/А*ч Коэффициент наплавки, кг наплавленного металла, кг							
Во избежание выкрашивания не рекомендуется производить наплавку рабочих поверхностей стальных деталей более чем в два слоя, чугунных — в один слой. Для наплавки больших толщин нижние слои наплавляют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, г/А*ч Расход электродов на 1 кг наплавленного металла, кг	наплавленных деталей.	Твердость	ь наплавлен	ного мета	алла после	наплавки	
рекомендуется производить наплавку рабочих поверхностей стальных деталей более чем в два слоя, чугунных — в один слой. Для наплавки больших толщин нижние слои наплавляют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, г/А*ч Г/А*ч Расход электродов на 1 кг наплавленного металла, кг	Po uofovoluo pi urpolluspollus lio						
рабочих поверхностей стальных деталей более чем в два слоя, чугунных — в один слой. Для наплавки больших толщин нижние слои наплавляют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, г/А*ч Г/А*ч Расход электродов на 1 кг наплавленного металла, кг			• • •				
деталей более чем в два слоя, чугунных – в один слой. Для наплавки больших толщин нижние слои наплавляют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, г/А*ч Расход электродов на 1 кг наплавленного металла, кг							
чугунных — в один слой. Для наплавки больших толщин нижние слои наплавляют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, г/А*ч Г/А*ч Расход электродов на 1 кг наплавленного металла, кг							
больших толщин нижние слои наплавляют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, г/А*ч г/А*ч Расход электродов на 1 кг наплавленного металла, кг							
наплавляют электродами других марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, г/А*ч кг наплавленного металла, кг							
марок в зависимости от марки основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, г/А*ч кг наплавленного металла, кг	•						
основного металла. Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, г/А*ч кг наплавленного металла, кг							
Наплавка на постоянном токе обратной полярности. Коэффициент наплавки, г/А*ч Расход электродов на 1 кг наплавленного металла, кг	•						
обратной полярности. Коэффициент наплавки, г/А*ч Расход электродов на 1 кг наплавленного металла, кг	Collobitoro Metariria.						
обратной полярности. Коэффициент наплавки, г/А*ч Расход электродов на 1 кг наплавленного металла, кг	Наплавка на постоянном токе						
Коэффициент наплавки, Расход электродов на 1 г/А*ч кг наплавленного металла, кг							
г/А*ч кг наплавленного металла, кг	Coparitor homphootis.						
металла, кг					•		
			г/А*ч				
9 1.4						1, КГ	
			9		1,4		

Информация по упаковке			Режимы сварочного тока
Диаметр, мм	Длина, мм	Вес пачки, кг	Сварочный ток, А
4,0	450	1,0; 2,5; 6,0	200-220
5,0	450	1,0; 2,5; 6,2	250-270
6,0	450	1,0; 2,5; 6,5	300-320

200°С – 2 часа

= (+)

T-620

ΓΟCT 9466-75, ΓΟCT 10051-75 ΤУ 1272-005-11040008-2016 $\frac{\text{9-320X23C2}\Gamma\text{TP} - \text{T-620} - \emptyset - \text{H}\Gamma}{\text{E} - 700/59 - 1 - \Pi \text{ 42}}$

Описание	Классификация и одобрения					
Электроды со специальным видом						
покрытия предназначены для						
наплавки быстроизнашивающихся						
деталей машин из стали и чугуна,						
работающих в условиях абразивного						
изнашивания и умеренных ударных	Химический состав наплавленного металла, %					
нагрузках.	С	Mn	Si	Cr	В	
Наплавленный металл обладает	2,9-3,5	1,0-1,5	2,0-2,5	22-24	0,5-1,5	
паплавленный металл ооладает высокой износостойкостью в		кий состав		енного мет	галла, %	
условиях истирания абразивными	Ti	S	Р			
материалами, пониженной	0,5-1,5	≤0,035	≤0,040			
сопротивляемостью ударам, склонен						
к образованию трещин, не	Механические свойства наплавленного					
снижающих обычно	металла					
эксплуатационную стойкость	_					
наплавленных деталей.	Твердость наплавленного металла после наплавки					
	в исходном состоянии 56-63 HRC.					
Во избежание выкрашивания не						
рекомендуется производить наплавку						
стальных деталей более чем в два						
слоя, чугунных – в один слой. Для						
наплавок больших толщин нижние						
слои наплавляют электродами других						
марок, в зависимости от марки основного металла. Возможна						
наплавка ванным способом.						
наплавка ванным спосооом.						
Наплавка на постоянном токе						
обратной полярности.	16 1 1					
		иент наплав		код электр		
		г/А*ч	К	г наплавле		
		0		металла	ι, ΚΓ	
		9		1,4		

Ток	= (+)	
Пространственные положения	1	
Режим прокалки	200°C – 2 часа	

Информация по упаковке			Режимы сварочного тока
Диаметр, мм	Длина, мм	Вес пачки, кг	Сварочный ток, А
4,0	450	1,0; 2,5; 6,0	200-220
5,0	450	1,0; 2,5; 6,2	250-270
6,0	450	1,0; 2,5; 6,5	300-320

УОНИ-13/НЖ 20X13

ΓΟCT 9466-75, ΓΟCT 10051-75 ΤУ 1272-005-11040008-2016 <u> Э-20X13 – УОНИ-13/НЖ/20X13 – Ø – НД</u> E – 450/47 – 2 – Б 40

Описание		Классификация и одобрения				
Электроды с основным видом						
покрытия предназначены для						
наплавки штампов холодной и						
горячей (до 400°С) обрезки,						
уплотнительных поверхностей						
деталей общепромышленной	Химичесн	кий состав	наплавле	енного ме	галла, %	
арматуры, а также	С	Mn	Si	Ni	Ćr	
быстроизнашивающихся деталей	0,15-0,25	≤0.8	≤0.7	≤0.6	12-14	
машин.		кий состав		- , -	таппа. %	
	S	P			1	
Наплавленный металл хорошо	≤0,030	≤0,035				
сопротивляется истиранию при		_0,000		1	I.	
температуре до 400°С, стоек к	Mexa	Механические свойства наплавленного				
коррозии в среде пара морской воды.	металла					
Наплавку производят в нижнем положении в один – пять слоёв и как правило с предварительным подогревом до температуры 300-400°С с последующим медленным охлаждением.	Твердость наплавленного металла после термообработки 40,5-49,5 HRC (закалка при температуре 850°C, отпуск при 300° выдержка 1 час).					
Наплавка на постоянном токе обратной полярности.						
		ент наплав	ки, Расх	код электр	одов на 1	
	г/А*ч кг наплавлен металла,					
					I, КГ	
	1	11		1,7		

Ток	= (+)
Пространственные положения	1
Режим прокалки	350°C – 1 час

Информация по упаковке		аковке	Режимы сварочного тока
Диаметр, мм	Длина, мм	Вес пачки, кг	Сварочный ток, А
3,0	350	1,0; 2,5; 5,5	80-100
4,0	450	1,0; 2,5; 6,2	110-140
5,0	450	1,0; 2,5; 6,5	140-170
6,0	450	1,0; 2,5; 5,0	170-200

ЦН-6Л

ГОСТ 9466-75, ГОСТ 1051-75 ТУ 1272-005-11040008-2016 $\frac{9-08X17H8C6\Gamma - ЦН-6Л - Ø - НД}{E - 300/33 - 2 - Б 40}$

Описание	Классификация и одобрения				
Электроды с основным видом покрытия предназначены для наплавки уплотнительных поверхностей деталей арматуры					
котлов, работающих при температуре					
до 57000	Химичес	кий состав	наплавле	енного ме	талла, %
570°C и давлении до 7800 МПа.	С	Mn	Si	Ni	Cr
	0,05-0,12	1,0-2,0	4,8-6,4	7,0-9,0	15,0-18,0
Наплавка на изделия (кроме	Химичес	кий состав	наплавле	енного ме	талла, %
небольших) производится с	S	Р			
предварительным подогревом до температуры не менее 300°C.	≤0,025	≤0,030			
Наплавка производится в нижнем положении на постоянном токе обратной полярности.	Твер	дость напла термообра ри 725°С, в	металла авленного аботки 29,5	металла п 5-39 HRC час, заме	осле
		чент наплав г/А*ч		код электр г наплавлю металла	енного
		14		1,4	.,
	ı	• •		1,-	

Ток	= (+)
Пространственные положения	1
Режим прокалки	150°C – 1 час

Информация по упаковке			Режимы сварочного тока
Диаметр, мм	Длина, мм	Вес пачки, кг	Сварочный ток, А
4,0	450	1,0; 2,5; 5,5	110-130
5,0	450	1,0; 2,5; 5,0	180-200

ЭH-60M

ΓΟCT 9466-75, ΓΟCT 10051-75 ΤУ 1272-005-11040008-2016 $\frac{\text{Э-70X3CMT} - \text{ЭH-60M} - \emptyset - \text{НД}}{\text{E} - 650/57 - 2 - \text{Б}}$ 40

	1	16			
Описание		Классифик	сация и о	доорения	
Электроды с основным видом					
покрытия предназначены для					
наплавки штампов всех типов,					
работающих с нагревом контактных					
поверхностей до температуры 400°C					
и других быстроизнашивающихся		кий состав	наплавл	енного мет	галла, %
деталей станочного оборудования.	С	Mn	Si	Cr	Мо
Hannannau vi varann afnanar	0,5-0,9	0,4-1,0	0,8-1,2	2,3-3,2	0,3-0,7
Наплавленный металл обладает высокой износостойкостью в	Химичес	кий состав		енного мет	галла, %
	Ti	S	Р		
условиях эксплуатации штампов холодного деформирования,	≤0,3	≤0,030	≤0,030		
удовлетворительно сопротивляется					
ударам.	Mexa	нические с	войства	наплавлен	ного
ударам.		1	металла		
Наплавку производят в два — пять слоёв толщиной до 10мм или ванным способом высотой до 50мм с подогревом деталей до температуры 300-400°С. Наплавка производится в нижнем положении и наклонном положениях на постоянном токе обратной полярности.	T				
	Коэффиці	ент наплав	ки, Рас	ход электро	одов на 1
		г/А*ч		кг наплавле	енного
				металла	, кг
		8,5		1,8	

Ток	= (+)
Пространственные положения	1
Режим прокалки	300°C – 1 час

Информация по упаковке		аковке	Режимы сварочного тока
Диаметр, мм Длина, мм Вес пачки, кг		Вес пачки, кг	Сварочный ток, А
3,0	350	1,0; 2,5; 5,0	80-100
4,0	450	1,0; 2,5; 6,2	110-140
5,0	450	1,0; 2,5; 5,0	140-180

03Б-2М

ГОСТ 9466-75 ТУ 1272-007-11040008-2016

О3Б-2M – Ø

Описание		Классификаці	ия и одоб	брения	
Электроды предназначены для					
варки и наплавки бронз, в первую					
очередь оловянно-фосфористых и					
кудожественных, наплавки на сталь и					
бронзу и для заварки дефектов					
бронзового и чугунного литья,	Типичнь	ій химический	состав	наплавл	енного
возможно применение для сварки и		метал	пла, %		
наплавки латуни. Стержень	Cu	Sn	Mn	Ni	Fe
лектрода из проволоки марки	основа	6,0	1,0	0,8	0,5
БрОФ6,5-0,4.	Химичесі	кий состав наг	лавленн	юго мет	алла, %
I	Р				
Наплавленный металл обладает высокой износостойкостью.	0,35				
ысокой износостойкостью. Электроды эффективны при сварке и		<u> </u>			
ионтаже изделий монументальной	Mexa	Механические свойства наплавленного			
скульптуры, обеспечивая хорошую	металла (типичные значения)				
патинируемость металла шва.	Предел прочности на разрыв, МПа			≥290	
ia minpy omoorb morassia Eba.	Относительное удлинение, %			≥8	
Сварка в нижнем, горизонтальном и	Твердость, НВ ≥100				
вертикальном положениях на					
постоянном токе обратной					
олярности.					
	Коэффици	ент наплавки,	Расход	, электро	одов на
		/A*ч		аплавле	
				иеталла,	, кг
		14		1.4	

TOK	= (+)
Пространственные положения	1, 2, 3, 4
Режим прокалки	200°C – 1 час

Информация по упаковке			Режимы сва	рочного тока
			Сварочный ток, А	
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикальное
				снизу-вверх
3,0	350	1,0; 2,5; 5,0	100-120	90-110
4,0	450	1,0; 2,5; 7,5	140-160	120-140

MHЧ-2

ГОСТ 9466-75 ТУ 1272-006-11040008-2016

MH4-2 - Ø

Описание		Классифи	кация и с	добрения	
Электроды предназначены для					
холодной сварки, наплавки и заварки					
дефектов чугунного литья деталей из					
серого, ковкого и высокопрочного					
чугуна. Предпочтительны для заварки					
первого слоя в соединениях,	Химичес	кий состав	наппавг	енного ме	таппа %
требующих высокую плотность, а	Ni	Mn	Fe		Cu
также для сварки соединений, к	64-68	1,8-2,6	2,2-3,5		льное
которым предъявляют повышенные		кий состав			
требования по чистоте	ANIMINACC	KNIN COCIAB	Паплавл	Т	1 a 1 1 1 a , 70
поверхности после обработки.					
Стержень электрода – проволока				1	
марки НМЖМц 28-2,5-1,5 по ГОСТ					
492-2006.	Механические свойства наплавленного				ного
Наплавленный металл	_		металла		1 400 400
коррозионностоек в жидкостных	Твердості	ь наплавлен	ного мет	алла, НВ	120-160
агрессивных средах и горячих газах.					
Сварка и наплавка производятся с					
минимальным тепловложением					
короткими швами длиной 20-30 мм с					
послойным охлаждением на воздухе					
до 60°C и с проковкой каждого					
участка шва легкими ударами					
молотка.					
Сварка в нижнем и вертикальном					
положениях на постоянном токе					
обратной полярности.					
	Коэффиц	иент наплав	вки. Рас	сход электр	одов на 1
		г/А*ч	,	кг наплавле	
				металла	
		11,5		1,5	-,
	<u> </u>	, 0		.,0	

Ток	= (+)
Пространственные положения	1, 2, 3, 4
Режим прокалки	200°C – 1 час

Информация по упаковке		Режимы сварочного тока		
			Сварочн	ый ток, А
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикальное
	Пижі		Тижнее	снизу-вверх
3,0	350	1,0; 2,5; 6,5	90-110	70-90
4,0	350	1,0; 2,5; 6,5	120-140	100-120
5,0	350	1,0; 2,5; 5,0	160-190	140-170
6,0	350	1,0; 2,5; 6,2	210-230	190-210

034-1

FOCT 9466-75 TY 1272-006-11040008-2016

Описание		Кпассифи	кация и	одобрения	
Электроды предназначены для				одооронии	
холодной сварки и наплавки серого и					
ковкого чугуна, а также для заварки					
дефектов чугунного литья. При					
повышенных требованиях по					
обрабатываемости и плотности	Химичес	кий состав	в наплав	зленного ме	талла, %
сварного соединения их применяют в сочетании с электродами марки МНЧ-			Cu		
2. Стержень электрода – медная			основа		
проволока марки М1 ГОСТ 859-2014.	Химичес	кий состав	наплав	вленного ме	талла, %
, , , , , , , , , , , , , , , , , , , ,					
Сварка и наплавка производятся					
небольшими участками длиной 30-60	Mova	HINDOCKINO (РОЙСТВ	2 11211121101	чиого
мм с послойным охлаждением на	Механические свойства наплавленного металла (средние значения)				
воздухе до 60°C. Сразу после отрыва дуги шов проковывают легкими	Твердость наплавленного металла, НВ 150-200				
ударами молотка.	твердееть наплавленного металла, тв				
ударани него на					
Сварка в нижнем положении на					
постоянном токе обратной					
полярности.					
	Коэффиц	иент наплав	вки Р	асход электр	олов на 1
		г/А*ч	,	кг наплавл	
				металла	
		13		1,7	

Ток	= (+)
Пространственные положения	1, 2, 3, 4
Режим прокалки	200°C – 1 час

Информация по упаковке			Режимы сварочного тока		
			Сварочн	ый ток, А	
Диаметр, мм	Длина, мм	Вес пачки, кг Нижнее		Вертикальное	
			Пижнее	снизу-вверх	
3,0	350	1,0; 2,5; 5,0	80-100	70-90	
4,0	450	1,0; 2,5; 5,0	100-140	100-120	
5,0	450	1,0; 2,5; 5,0	150-190	140-170	

034-2

FOCT 9466-75 TY 1272-006-11040008-2016

Химическ				
Механ м Предел про	Мп 1,8 ий состав наг ические свой иеталла (типи рчности на раз	Si 0,2 плавле иства на чные з врыв, М	Nі 2,0 нного мет аплавлені начения) Па	Fe 10,0 алла, %
г/	/A*ч		наплавле металла	нного
7	Си основа (имическ механ меха	Си Мп роснова 1,8 Кимический состав наг Механические свой металла (типи редел прочности на раз	Си Мп Si оденова 1,8 0,2 (имический состав наплавле металла (типичные з редел прочности на разрыв, М вердость наплавленного метал	основа 1,8 0,2 2,0 Кимический состав наплавленного мет Механические свойства наплавлени металла (типичные значения) редел прочности на разрыв, МПа вердость наплавленного металла, НВ оэффициент наплавки, г/А*ч Расход электро кг наплавле металла

Ток	= (+)
Пространственные положения	1,2,3,4
Режим прокалки	200°C – 1 час

Информация по упаковке		Режимы сва	рочного тока	
-			Сварочн	ый ток, А
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикальное
			Пижнее	снизу-вверх
3,0	350	1,0; 2,5; 6,0	90-110	80-100
4,0	450	1,0; 2,5; 7,5	120-140	100-120
5,0	450	1,0; 2,5; 5,0	160-190	150-170
6,0	450	1,0; 2,5; 5,0	220-250	210-240

034-6

ΓΟCT 9466-75 ΤУ 1272-006-11040008-2016

034-6 - Ø

Описание
Электроды предназначены для
сварки без подогрева изделий из
серого и ковкого чугуна,
предпочтительно при ремонте
тонкостенных деталей.
Технологичны при сварке «горелого»
чугуна, при заварке сквозных
дефектов на весу.

Стержень электрода – медная проволока марки M1 по ГОСТ 859-2014.

Сварка и наплавка производятся с минимальным тепловложением короткими швами длиной 30-50 мм с послойным охлаждением на воздухе до 100°С. и с проковкой каждого участка шва легкими ударами молотка.

Сварка в нижнем положении на постоянном токе обратной полярности.

Типичный химический состав наплавленного					
металла, %					
Cu	С	Mn	Si	Ni	
основа	0,05	1,1	0,3	1,2	
Химический состав наплавленного металла, %					
Cr	Fe	В			
0,7	10,0	0,2			

Классификация и одобрения

Механические свойства наплавленного				
металла (типичные значения)				
Предел прочности на разрыв, МПа 320				
Относительное удлинение, %				
Твердость наплавленного металла, НВ	150-200			

Коэффициент наплавки,	Расход электродов на 1
г/А*ч	кг наплавленного
	металла, кг
15,5	1,4

Ток	= (+)
Пространственные положения	1, 2, 3, 4
Режим прокалки	200°С – 1 час

Информация по упаковке			Режимы сварочного тока		
				ый ток, А	
Диаметр, мм	Длина, мм	Вес пачки, кг	Нижнее	Вертикальное	
			пижнее	снизу-вверх	
3,0	350	1,0; 2,5; 5,5	80-100	70-90	
4,0	450	1,0; 2,5; 6,8	140-160	130-150	
5,0	450	1,0; 2,5; 7,0	180-200	160-180	

ЦЧ-4

ГОСТ 9466-75 ТУ 1272-006-11040008-2016

ЦЧ-4 – Ø

Описание		Классифик	ация и о	добрения	
Электроды предназначены для				•	
холодной сварки конструкций из					
высокопрочного чугуна с					
шаровидным графитом и серого					
чугуна с пластинчатым графитом, а					
также их сочетаний со сталью.	Химичес	кий состав	наплавл	енного мет	алла, %
Используются для сварки	С	Mn	Si	V	Ś
повреждённых деталей и заварки	≤0,25	≤2,5	≤0,8	8,5-10,5	≤0,04
дефектов в отливках из	Химичес	кий состав	наплавл	енного мет	
высокопрочного и серого чугуна, для	Р				ĺ
предварительной наплавки первых	≤0,05				
(одного или двух) слоёв на	,	L.		1	1
изношенные чугунные детали под	Mexa	нические с	войства	наплавлен	ного
последующую наплавку специальными электродами.		металла (ти	пичное	значения)	
специальными электродами.	Предел пр	очности на	разрыв, М	dПа	495
Сварку производят небольшими	Относительное удлинение, % 8				
участками длиной 25-35 мм с	Твердость	наплавлен	ного мета	алла, НВ	160-190
послойным охлаждением на воздухе					
до 60°C. При сварке ковкого и					
высокопрочного чугуна длина валика					
может быть увеличена до 80-100 мм.					
-					
Сварка в нижнем положении на					
постоянном токе обратной					
полярности.					
	Koadidaaa	ент наплавн	и Рас	ход электро	ллов на 1
		тент наплаві г/А*ч		лод электро кг наплавле	
		1// 1		металла	
		10		1,8	,

Ток	= (+)
Пространственные положения	1
Режим прокалки	200°C – 1 час

Информация по упаковке			Режимы сварочного тока
Диаметр, мм	Длина, мм	Вес пачки, кг	Сварочный ток, А
3,0	350	1,0; 2,5; 5,5	65-80
4,0	450	1,0; 2,5; 6,8	90-120
5,0	450	1,0; 2,5; 6,2	130-150

Справочная информация и условные обозначения

Классификация наплавленного металла в соответствии с ГОСТ 9467-75

Электроды для сварки хромомолибденовых теплоустойчивых сталей

Химический состав наплавленного металла

Типопоитропо	С	Si	Mn	Cr	Ni	Мо	V	Nb	S	Р
Тип электрода									не более	
Э-09M	0,06-	0,15-	0,40-			0,35-			0.030	0.030
J-09W	0,12	0,35	0,90			0,65			0,030	0,030
Э-09MX	0,06-	0,15-	0,40-	0,35-		0,35-			0,025	0,035
J-09IVIA	0,12	0,35	0,90	0,65		0,65			0,025	0,033
Э-09X1M	0,06-	0,15-	0,50-	0,80-		0,40-			0.025	0,035
3-09X 11VI	0,12	0,40	0,90	1,20		0,70			0,025	0,033
Э-05X2M	0,03-	0,15-	0,50-	1,70-		0,40-			0.020	0.030
J-USAZIVI	0,08	0,45	1,00	2,20		0,70			0,020	0,030
Э-09X2M1	0,06-	0,15-	0,50-	1,90-		0,80-			0,025	0,035
J-09/21VI I	0,12	0,45	1,00	2,50		1,10				
Э-09Х1МФ	0,06-	0,15-	0,50-	0,80-		0,40-	0,10-		0.020	0.025
3-09X1MΨ	0,12	0,40	0,90	1,25		0,70	0,30		0,030	0,035
Э-10Х1М1НФБ	0,07-	0,15-	0,60-	1,00-	0,60-	0,70-	0,15-	0,07-	0.025	0.020
Э-10Х1М1НФБ	0,12	0,40	0,90	1,40	0,90	1,00	0,35	0,20	0,025	0,030
Э-10Х3М1БФ	0,07-	0,15-	0,50-	2,40-		0,70-	0,25-	0,35-	0.025	0.020
	0,12	0,45	0,90	3,00		1,00	0,50	0,60	0,025	0,030
Э-10Х5МФ	0,07-	0,15-	0,50-	4,00-		0,35-	0,10-		0.005	0.025
	0,13	0,45	0,90	5,50		0,65	0,35		0,025	0,035

Механические свойства наплавленного металла после соответствующей ТО при 20°С (не менее)

Тип электрода	Предел прочности, кгс/мм² (МПа)	Относительное удлинение, %	Ударная вязкость КСU, кгс⋅м/см² (Дж/см²)
Э-09М	45 (441)	18	10 (98)
Э-09MX	46 (451)	18	9 (88)
Э-09X1M	48 (470)	18	9 (88)
Э-05X2M	48 (470)	18	9 (88)
Э-09X2M1	50 (490)	16	8 (78)
Э-09Х1МФ	50 (490)	16	8 (78)
Э-10Х1М1НФБ	50 (490)	15	7 (69)
Э-10Х3М1БФ	55 (539)	14	6 (59)
Э-10Х5МФ	55 (539)	14	6 (59)

КСV – ударная вязкость наплавленного металла [Дж/см 2] на V-образном надрезе Шарпи при испытаниях на ударный изгиб.

КСU – ударная вязкость наплавленного металла [Дж/см²] на U-образном надрезе Менаже при испытаниях на ударный изгиб.

Э – электрод

^{1 –} индекс, определяющий химический состав и механические свойства наплавленного метапла

Справочная информация и условные обозначения

Условия хранения электродов

Все покрытые электроды чувствительны к поглощению влаги. Повышенное содержание влаги может привести к образованию пор или водородному растрескиванию. Для минимизации поглощения влаги электродами рекомендуется соблюдать климатические параметры условий хранения:

- 5-15°C при максимальной относительной влажности 60%
- 15-25°C при максимальной относительной влажности 50%
- >25°C при максимальной относительной влажности 40%

При более низких температурах, для достижения требуемого уровня содержания влаги, достаточно поддерживать температуру хранения на 10°С выше температуры окружающей среды. Холодные упаковки перед вскрытием необходимо выдержать, чтобы они нагрелись до температуры окружающей среды. При более высоких температурах необходимый уровень содержания влаги в атмосфере может быть достигнут за счет ее осушки.

Срок хранения электродов при вышеописанных условиях не должен превышать 3 лет.

Информация о прокалке

- Покрытые электроды с основным видом покрытия и низким содержанием водорода перед применением в обязательном порядке должны подвергаться прокалке.
- Электроды с кислым или рутиловым покрытием, а также все типы электродов с основным видом покрытия склонны к порообразованию, поэтому если влажность покрытия не соответствует требованиям, их необходимо прокалить.
- Электроды для сварки углеродистых сталей с кислым или рутиловым покрытием обычно прокалки не требуют.
- Электроды с целлюлозным покрытием прокаливать не рекомендуется.

Режимы прокалки

- Температура и время прокалки электродов в сушильных шкафах и выдержки в термопеналах указывается на упаковке.
- Температура прокалки это температура, до которой должен нагреться сам электрод.
 Время прокалки должно отсчитываться от того момента, когда температура электрода достигла заданного значения.
- Не укладывайте электроды в сушильном шкафу более чем в 4 слоя.
- Покрытые электроды не рекомендуется прокаливать более 3 раз.

Условия хранения проволоки

Сплошные MIG/MAG проволоки должны храниться в сухих условиях, в оригинальной запечатанной неповрежденной упаковке, в которой они были поставлены. Контакт с водой и влажностью должен быть исключен. Не допускать попадания атмосферных осадков и конденсации влаги на холодной поверхности проволоки.

Частично использованная проволока должна быть помещена в полиэтиленовый пакет для предотвращения загрязнения ее поверхности. Открытая проволока не защищена от попадания на нее пыли. Чтобы предотвратить подобное загрязнение, оборудование, на которое установлена проволока, должно иметь защитный кожух, предотвращающий попадание пыли на катушку.

Все сплошные проволоки рекомендуется хранить при температуре не ниже 15°C и относительной влажности воздуха не более 60%.

Справочная информация и условные обозначения

Назначение электродов по типам и маркам

Тип электрода по ГОСТ 9467	Тип покрытия по ГОСТ 9466	Марка электрода	Основное назначение
Э42	Рутиловое	AHO-6	Для сварки конструкций из углеродистых сталей с временным сопротивлением разрыву не более 412 МПа (42 кгс/мм²)
Э 42A	Основное	УОНИ-13/45	Для сварки конструкций из углеродистых и низколегированных сталей с временным сопротивлением разрыву не более 412 МПа (42 кгс/мм²), когда к металлу шва предъявляются повышенные требования по пластичности и ударной вязкости
Э 46	Рутилово- целлюлозное	GOODEL-OK46 GOODEL MP-3 GOODEL MP-3C AHO-21	Для сварки конструкций из углеродистых и низколегированных сталей с
	Рутиловое	AHO-4 MP-3 MP-3C O3C-4 O3C-6	временным сопротивлением разрыву не более 451 МПа (46 кгс/мм²)
Э 50A	Основное	УОНИ-13/55 GOODEL-52U GOODEL-OK48 AHO-11 TMУ-21У ЦУ-5	Для сварки ответственных конструкций из углеродистых и низколегированных сталей с временным сопротивлением разрыву до 490 МПа (50 кгс/мм²)
3 60	Основное	УОНИ-13/65	Для сварки тяжелонагруженных, работающих при знакопеременных нагрузках машиностроительных конструкций из углеродистых и низколегированных сталей с временным сопротивлением разрыву до 588 МПа (60 кгс/мм²)

ПОПУЛЯРНЫЕ МАРКИ

СВАРОЧНОГО ОБОРУДОВАНИЯ

PRO MIG 500PW

PRO MIG-500PW – надежный и многофункциональный промышленный сварочный полуавтомат, предназначенный для сварки в среде защитных газов сплошной и порошковой проволокой (MIG/MAG) и ручной дуговой сварки (MMA). Функции импульса и двойного импульса обеспечивают лучший контроль дуги для получения оптимальной структуры сварного шва, а система жидкостного охлаждения гарантирует непрерывную работу.

PRO CUT-60MV

Источник воздушно-плазменной резки PRO CUT-60MV сочетает в себе высокий уровень надежности и отличное качество кромок после раскроя. Универсальность подключения позволяет аппарату работать как от однофазной сети 220 В, так и от трехфазной 380 В

PRO ARC-250-3

Аппарат предназначен для ручной дуговой сварки (ММА) покрытыми электродами на прямой и обратной полярности и аргонодуговой сварки с контактным поджигом дуги (Lift TIG).

PRO TIG-200P

Аппарат предназначен для аргонодуговой (TIG) сварки и ручной дуговой сварки (ММА) покрытыми электродами. Обладает высокочастнотным бесконтактным (НF) поджигом дуги.

ПОПУЛЯРНЫЕ МАРКИ

СВАРОЧНЫХ АКСЕССУАРОВ И СИЗ

КРАГИ

MS-710F

Утепленные краги, прошиты кевларовой нитью и имеют подкладку из хлопка.

MS-716

Изготовлены из толстой, воловьей кожи и прошиты огнеупорной кевларовой нитью.

СВАРОЧНЫЕ МАСКИ

GOODEL Φ9-PRO

Высокая степень защиты - маска оснащена светофильтром оптического класса 1/1/1/1 с четырмя сенсорами и высокой скоростью срабатывания <0,25 мс. Степень затемнения 4-8/9-13 DIN с плавной регулировкой позволяет настроить светофильтр маски под индивидуальные потребности сварщика при разных способах сварки и резки. Система <<REAL COLOR» обеспечивает естественную цветопередачу и уровень контрастности.

АКСЕССУАРЫ

СЕРТИФИКАТЫ

СЕРТИФИКАТЫ

новости

дистрибьюторы

ВИДЕО

WWW.GOODEL.RU